Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):785–792. doi: 10.1042/0264-6021:3630785

Mutation of conserved active-site threonine residues in creatine kinase affects autophosphorylation and enzyme kinetics.

Martin Stolz 1, Thorsten Hornemann 1, Uwe Schlattner 1, Theo Wallimann 1
PMCID: PMC1222532  PMID: 11964180

Abstract

Muscle-type creatine kinase (MM-CK) is a member of an isoenzyme family with key functions in cellular energetics. It has become a matter of debate whether the enzyme is autophosphorylated, as reported earlier [Hemmer, Furter-Graves, Frank, Wallimann and Furter (1995) Biochim. Biophys. Acta 1251, 81-90], or exclusively nucleotidylated. In the present paper, we demonstrate unambiguously that CK is indeed autophosphorylated. However, this autophosphorylation is not solely responsible for the observed microheterogeneity of MM-CK on two-dimensional isoelectric focusing gels. Using phosphoamino-acid analysis of (32)P-labelled CK isoforms, phosphothreonine (P-Thr) residues were identified as the only product of autophosphorylation for all CK isoenzymes. The phosphorylated residues in chicken MM-CK were allocated to a region in the vicinity of the active site, where five putative phosphorylation sites were identified. Site-directed threonine-valine-replacement mutants reveal that autophosphorylation is not specific for one particular residue but occurs at all examined threonine residues. The enzyme kinetic parameters indicate that the autophosphorylation of CK exerts a modulatory effect on substrate binding and the equilibrium constant, rather than on the catalytic mechanism itself.

Full Text

The Full Text of this article is available as a PDF (247.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson N. G., Anderson N. L. Analytical techniques for cell fractions. XXI. Two-dimensional analysis of serum and tissue proteins: multiple isoelectric focusing. Anal Biochem. 1978 Apr;85(2):331–340. doi: 10.1016/0003-2697(78)90229-4. [DOI] [PubMed] [Google Scholar]
  2. Bitte L., Kabat D. Isotopic labeling and analysis of phosphoproteins from mammalian ribosomes. Methods Enzymol. 1974;30:563–590. doi: 10.1016/0076-6879(74)30056-0. [DOI] [PubMed] [Google Scholar]
  3. Bossemeyer D. The glycine-rich sequence of protein kinases: a multifunctional element. Trends Biochem Sci. 1994 May;19(5):201–205. doi: 10.1016/0968-0004(94)90022-1. [DOI] [PubMed] [Google Scholar]
  4. Cooper J. A., Sefton B. M., Hunter T. Detection and quantification of phosphotyrosine in proteins. Methods Enzymol. 1983;99:387–402. doi: 10.1016/0076-6879(83)99075-4. [DOI] [PubMed] [Google Scholar]
  5. David S. S., Haley B. E. ATP nucleotidylation of creatine kinase. Biochemistry. 1999 Jun 29;38(26):8492–8500. doi: 10.1021/bi990041b. [DOI] [PubMed] [Google Scholar]
  6. Duclos B., Marcandier S., Cozzone A. J. Chemical properties and separation of phosphoamino acids by thin-layer chromatography and/or electrophoresis. Methods Enzymol. 1991;201:10–21. doi: 10.1016/0076-6879(91)01004-l. [DOI] [PubMed] [Google Scholar]
  7. Eder M., Schlattner U., Becker A., Wallimann T., Kabsch W., Fritz-Wolf K. Crystal structure of brain-type creatine kinase at 1.41 A resolution. Protein Sci. 1999 Nov;8(11):2258–2269. doi: 10.1110/ps.8.11.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eppenberger H. M., Dawson D. M., Kaplan N. O. The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. J Biol Chem. 1967 Jan 25;242(2):204–209. [PubMed] [Google Scholar]
  9. Forstner M., Kriechbaum M., Laggner P., Wallimann T. Structural changes of creatine kinase upon substrate binding. Biophys J. 1998 Aug;75(2):1016–1023. doi: 10.1016/S0006-3495(98)77590-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Furter R., Furter-Graves E. M., Wallimann T. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry. 1993 Jul 13;32(27):7022–7029. doi: 10.1021/bi00078a030. [DOI] [PubMed] [Google Scholar]
  11. Haas R. C., Strauss A. W. Separate nuclear genes encode sarcomere-specific and ubiquitous human mitochondrial creatine kinase isoenzymes. J Biol Chem. 1990 Apr 25;265(12):6921–6927. [PubMed] [Google Scholar]
  12. Hanks S. K., Quinn A. M. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 1991;200:38–62. doi: 10.1016/0076-6879(91)00126-h. [DOI] [PubMed] [Google Scholar]
  13. Hemmer W., Furter-Graves E. M., Frank G., Wallimann T., Furter R. Autophosphorylation of creatine kinase: characterization and identification of a specifically phosphorylated peptide. Biochim Biophys Acta. 1995 Sep 6;1251(2):81–90. doi: 10.1016/0167-4838(95)00083-7. [DOI] [PubMed] [Google Scholar]
  14. Hemmer W., Skarli M., Perriard J. C., Wallimann T. Effect of okadaic acid on protein phosphorylation patterns of chicken myogenic cells with special reference to creatine kinase. FEBS Lett. 1993 Jul 19;327(1):35–40. doi: 10.1016/0014-5793(93)81034-w. [DOI] [PubMed] [Google Scholar]
  15. Hochstrasser D. F., Harrington M. G., Hochstrasser A. C., Miller M. J., Merril C. R. Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal Biochem. 1988 Sep;173(2):424–435. doi: 10.1016/0003-2697(88)90209-6. [DOI] [PubMed] [Google Scholar]
  16. Hornemann T., Stolz M., Wallimann T. Isoenzyme-specific interaction of muscle-type creatine kinase with the sarcomeric M-line is mediated by NH(2)-terminal lysine charge-clamps. J Cell Biol. 2000 Jun 12;149(6):1225–1234. doi: 10.1083/jcb.149.6.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hossle J. P., Rosenberg U. B., Schäfer B., Eppenberger H. M., Perriard J. C. The primary structure of chicken B-creatine kinase and evidence for heterogeneity of its mRNA. Nucleic Acids Res. 1986 Feb 11;14(3):1449–1463. doi: 10.1093/nar/14.3.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hossle J. P., Schlegel J., Wegmann G., Wyss M., Böhlen P., Eppenberger H. M., Wallimann T., Perriard J. C. Distinct tissue specific mitochondrial creatine kinases from chicken brain and striated muscle with a conserved CK framework. Biochem Biophys Res Commun. 1988 Feb 29;151(1):408–416. doi: 10.1016/0006-291x(88)90608-0. [DOI] [PubMed] [Google Scholar]
  19. James P., Wyss M., Lutsenko S., Wallimann T., Carafoli E. ATP binding site of mitochondrial creatine kinase. Affinity labelling of Asp-335 with C1RATP. FEBS Lett. 1990 Oct 29;273(1-2):139–143. doi: 10.1016/0014-5793(90)81069-z. [DOI] [PubMed] [Google Scholar]
  20. Jones D. H., Howard B. H. A rapid method for site-specific mutagenesis and directional subcloning by using the polymerase chain reaction to generate recombinant circles. Biotechniques. 1990 Feb;8(2):178–183. [PubMed] [Google Scholar]
  21. Koufen P., Stark G. Free radical induced inactivation of creatine kinase: sites of interaction, protection, and recovery. Biochim Biophys Acta. 2000 Apr 15;1501(1):44–50. doi: 10.1016/s0925-4439(00)00005-3. [DOI] [PubMed] [Google Scholar]
  22. Kraft T., Hornemann T., Stolz M., Nier V., Wallimann T. Coupling of creatine kinase to glycolytic enzymes at the sarcomeric I-band of skeletal muscle: a biochemical study in situ. J Muscle Res Cell Motil. 2000;21(7):691–703. doi: 10.1023/a:1005623002979. [DOI] [PubMed] [Google Scholar]
  23. Kwiatkowski R. W., Schweinfest C. W., Dottin R. P. Molecular cloning and the complete nucleotide sequence of the creatine kinase-M cDNA from chicken. Nucleic Acids Res. 1984 Sep 25;12(18):6925–6934. doi: 10.1093/nar/12.18.6925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maggio E. T., Kenyon G. L. Properties of a CH3-blocked creatine kinase with altered catalytic activity. Kinetic consequences of the presence of the blocking group. J Biol Chem. 1977 Feb 25;252(4):1202–1207. [PubMed] [Google Scholar]
  25. Manavalan P., Johnson W. C., Jr Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem. 1987 Nov 15;167(1):76–85. doi: 10.1016/0003-2697(87)90135-7. [DOI] [PubMed] [Google Scholar]
  26. Milner-White E. J., Watts D. C. Inhibition of adenosine 5'-triphosphate-creatine phosphotransferase by substrate-anion complexes. Evidence for the transition-state organization of the catalytic site. Biochem J. 1971 May;122(5):727–740. doi: 10.1042/bj1220727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morris G. E., Frost L. C., Newport P. A., Hudson N. Monoclonal antibody studies of creatine kinase. Antibody-binding sites in the N-terminal region of creatine kinase and effects of antibody on enzyme refolding. Biochem J. 1987 Nov 15;248(1):53–59. doi: 10.1042/bj2480053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mühlebach S. M., Gross M., Wirz T., Wallimann T., Perriard J. C., Wyss M. Sequence homology and structure predictions of the creatine kinase isoenzymes. Mol Cell Biochem. 1994 Apr-May;133-134:245–262. doi: 10.1007/BF01267958. [DOI] [PubMed] [Google Scholar]
  29. Nettelblad F. A., Engström L. The kinetic effects of in vitro phosphorylation of rabbit muscle enolase by protein kinase C. A possible new kind of enzyme regulation. FEBS Lett. 1987 Apr 20;214(2):249–252. doi: 10.1016/0014-5793(87)80064-9. [DOI] [PubMed] [Google Scholar]
  30. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  31. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  32. Ordahl C. P., Evans G. L., Cooper T. A., Kunz G., Perriard J. C. Complete cDNA-derived amino acid sequence of chick muscle creatine kinase. J Biol Chem. 1984 Dec 25;259(24):15224–15227. [PubMed] [Google Scholar]
  33. Perdew G. H., Schaup H. W., Selivonchick D. P. The use of a zwitterionic detergent in two-dimensional gel electrophoresis of trout liver microsomes. Anal Biochem. 1983 Dec;135(2):453–455. doi: 10.1016/0003-2697(83)90711-x. [DOI] [PubMed] [Google Scholar]
  34. Quest A. F., Soldati T., Hemmer W., Perriard J. C., Eppenberger H. M., Wallimann T. Phosphorylation of chicken brain-type creatine kinase affects a physiologically important kinetic parameter and gives rise to protein microheterogeneity in vivo. FEBS Lett. 1990 Sep 3;269(2):457–464. doi: 10.1016/0014-5793(90)81215-a. [DOI] [PubMed] [Google Scholar]
  35. Rao J. K., Bujacz G., Wlodawer A. Crystal structure of rabbit muscle creatine kinase. FEBS Lett. 1998 Nov 13;439(1-2):133–137. doi: 10.1016/s0014-5793(98)01355-6. [DOI] [PubMed] [Google Scholar]
  36. Rosenberg U. B., Eppenberger H. M., Perriard J. C. Occurrence of heterogenous forms of the subunits of creatine kinase in various muscle and nonmuscle tissues and their behaviour during myogenesis. Eur J Biochem. 1981 May;116(1):87–92. doi: 10.1111/j.1432-1033.1981.tb05304.x. [DOI] [PubMed] [Google Scholar]
  37. Saks V. A., Rosenshtraukh L. V., Smirnov V. N., Chazov E. I. Role of creatine phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol. 1978 Oct;56(5):691–706. doi: 10.1139/y78-113. [DOI] [PubMed] [Google Scholar]
  38. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  39. Stolz M., Kraft T., Wallimann T. The isoenzyme-diagnostic regions of muscle-type creatine kinase, the M-260 and M-300 box, are not responsible for its binding to the myofibrillar M-band. Eur J Cell Biol. 1998 Sep;77(1):1–9. doi: 10.1016/S0171-9335(98)80096-4. [DOI] [PubMed] [Google Scholar]
  40. Trask R. V., Billadello J. J. Tissue-specific distribution and developmental regulation of M and B creatine kinase mRNAs. Biochim Biophys Acta. 1990 Jun 21;1049(2):182–188. doi: 10.1016/0167-4781(90)90039-5. [DOI] [PubMed] [Google Scholar]
  41. Turner D. C., Wallimann T., Eppenberger H. M. A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc Natl Acad Sci U S A. 1973 Mar;70(3):702–705. doi: 10.1073/pnas.70.3.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wallimann T., Eppenberger H. M. Localization and function of M-line-bound creatine kinase. M-band model and creatine phosphate shuttle. Cell Muscle Motil. 1985;6:239–285. doi: 10.1007/978-1-4757-4723-2_8. [DOI] [PubMed] [Google Scholar]
  43. Wallimann T., Moser H., Eppenberger H. M. Isoenzyme-specific localization of M-line bound creatine kinase in myogenic cells. J Muscle Res Cell Motil. 1983 Aug;4(4):429–441. doi: 10.1007/BF00711948. [DOI] [PubMed] [Google Scholar]
  44. Wallimann T., Schlösser T., Eppenberger H. M. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. J Biol Chem. 1984 Apr 25;259(8):5238–5246. [PubMed] [Google Scholar]
  45. Zhou G., Somasundaram T., Blanc E., Parthasarathy G., Ellington W. R., Chapman M. S. Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8449–8454. doi: 10.1073/pnas.95.15.8449. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES