Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 1;364(Pt 2):527–535. doi: 10.1042/BJ20011761

Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry.

Dan Blakey 1, Andrew Leech 1, Gavin H Thomas 1, Graham Coutts 1, Kim Findlay 1, Mike Merrick 1
PMCID: PMC1222598  PMID: 12023896

Abstract

The Amt family of high-affinity ammonium transporters is a family of integral membrane proteins that are found in archaea, bacteria, fungi, plants and animals. Furthermore, the family has recently been extended to humans with the recognition that both the erythroid and non-erythroid Rhesus proteins are also ammonium transporters. The Escherichia coli AmtB protein offers a good model system for the Amt family and in order to address questions relating to both its structure and function we have overproduced a histidine-tagged form of the protein (AmtB6H) and purified it to homogeneity. We examined the quaternary structure of AmtB6H (which is active in vivo) by SDS/PAGE, gel-filtration chromatography, dynamic light scattering and sedimentation ultracentrifugation. The protein was resistant to dissociation by SDS and behaved as a stable oligomer on SDS/PAGE. By equilibrium desorption chromatography we determined the mass ratio of dodecyl beta-D-maltoside to AmtB in the detergent-solubilized complex to be 1.03+/-0.03, and this allowed us to calculate, from analytical-ultracentrifugation data, that AmtB purifies as a trimer.

Full Text

The Full Text of this article is available as a PDF (221.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arechaga I., Miroux B., Karrasch S., Huijbregts R., de Kruijff B., Runswick M. J., Walker J. E. Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F(1)F(o) ATP synthase. FEBS Lett. 2000 Oct 6;482(3):215–219. doi: 10.1016/s0014-5793(00)02054-8. [DOI] [PubMed] [Google Scholar]
  2. Avent N. D., Ridgwell K., Tanner M. J., Anstee D. J. cDNA cloning of a 30 kDa erythrocyte membrane protein associated with Rh (Rhesus)-blood-group-antigen expression. Biochem J. 1990 Nov 1;271(3):821–825. doi: 10.1042/bj2710821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borgnia M. J., Kozono D., Calamita G., Maloney P. C., Agre P. Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J Mol Biol. 1999 Sep 3;291(5):1169–1179. doi: 10.1006/jmbi.1999.3032. [DOI] [PubMed] [Google Scholar]
  4. Boulanger P., le Maire M., Bonhivers M., Dubois S., Desmadril M., Letellier L. Purification and structural and functional characterization of FhuA, a transporter of the Escherichia coli outer membrane. Biochemistry. 1996 Nov 12;35(45):14216–14224. doi: 10.1021/bi9608673. [DOI] [PubMed] [Google Scholar]
  5. Champeil P., Menguy T., Tribet C., Popot J. L., le Maire M. Interaction of amphipols with sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem. 2000 Jun 23;275(25):18623–18637. doi: 10.1074/jbc.M000470200. [DOI] [PubMed] [Google Scholar]
  6. Chang A. C., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. doi: 10.1128/jb.134.3.1141-1156.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chappell James D., Prota Andrea E., Dermody Terence S., Stehle Thilo. Crystal structure of reovirus attachment protein sigma1 reveals evolutionary relationship to adenovirus fiber. EMBO J. 2002 Jan 15;21(1-2):1–11. doi: 10.1093/emboj/21.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clarke S. The size and detergent binding of membrane proteins. J Biol Chem. 1975 Jul 25;250(14):5459–5469. [PubMed] [Google Scholar]
  9. Eyers S. A., Ridgwell K., Mawby W. J., Tanner M. J. Topology and organization of human Rh (rhesus) blood group-related polypeptides. J Biol Chem. 1994 Mar 4;269(9):6417–6423. [PubMed] [Google Scholar]
  10. Friesen R. H., Knol J., Poolman B. Quaternary structure of the lactose transport protein of Streptococcus thermophilus in the detergent-solubilized and membrane-reconstituted state. J Biol Chem. 2000 Oct 27;275(43):33527–33535. doi: 10.1074/jbc.M004066200. [DOI] [PubMed] [Google Scholar]
  11. Fujii J., Maruyama K., Tada M., MacLennan D. H. Expression and site-specific mutagenesis of phospholamban. Studies of residues involved in phosphorylation and pentamer formation. J Biol Chem. 1989 Aug 5;264(22):12950–12955. [PubMed] [Google Scholar]
  12. Gaillard I., Slotboom D. J., Knol J., Lolkema J. S., Konings W. N. Purification and reconstitution of the glutamate carrier GltT of the thermophilic bacterium Bacillus stearothermophilus. Biochemistry. 1996 May 14;35(19):6150–6156. doi: 10.1021/bi953005v. [DOI] [PubMed] [Google Scholar]
  13. Hartel-Schenk S., Agre P. Mammalian red cell membrane Rh polypeptides are selectively palmitoylated subunits of a macromolecular complex. J Biol Chem. 1992 Mar 15;267(8):5569–5574. [PubMed] [Google Scholar]
  14. Heginbotham L., Odessey E., Miller C. Tetrameric stoichiometry of a prokaryotic K+ channel. Biochemistry. 1997 Aug 19;36(33):10335–10342. doi: 10.1021/bi970988i. [DOI] [PubMed] [Google Scholar]
  15. Howitt S. M., Udvardi M. K. Structure, function and regulation of ammonium transporters in plants. Biochim Biophys Acta. 2000 May 1;1465(1-2):152–170. doi: 10.1016/s0005-2736(00)00136-x. [DOI] [PubMed] [Google Scholar]
  16. Jack R., De Zamaroczy M., Merrick M. The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae. J Bacteriol. 1999 Feb;181(4):1156–1162. doi: 10.1128/jb.181.4.1156-1162.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jayakumar A., Schulman I., MacNeil D., Barnes E. M., Jr Role of the Escherichia coli glnALG operon in regulation of ammonium transport. J Bacteriol. 1986 Apr;166(1):281–284. doi: 10.1128/jb.166.1.281-284.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu Z., Peng J., Mo R., Hui C., Huang C. H. Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals. J Biol Chem. 2001 Jan 12;276(2):1424–1433. doi: 10.1074/jbc.M007528200. [DOI] [PubMed] [Google Scholar]
  19. Ludewig Uwe, von Wirén Nico, Frommer Wolf B. Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem. 2002 Jan 30;277(16):13548–13555. doi: 10.1074/jbc.M200739200. [DOI] [PubMed] [Google Scholar]
  20. Lustig A., Engel A., Tsiotis G., Landau E. M., Baschong W. Molecular weight determination of membrane proteins by sedimentation equilibrium at the sucrose or nycodenz-adjusted density of the hydrated detergent micelle. Biochim Biophys Acta. 2000 Apr 5;1464(2):199–206. doi: 10.1016/s0005-2736(99)00254-0. [DOI] [PubMed] [Google Scholar]
  21. Marini A. M., André B. In vivo N-glycosylation of the mep2 high-affinity ammonium transporter of Saccharomyces cerevisiae reveals an extracytosolic N-terminus. Mol Microbiol. 2000 Nov;38(3):552–564. doi: 10.1046/j.1365-2958.2000.02151.x. [DOI] [PubMed] [Google Scholar]
  22. Marini A. M., Matassi G., Raynal V., André B., Cartron J. P., Chérif-Zahar B. The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet. 2000 Nov;26(3):341–344. doi: 10.1038/81656. [DOI] [PubMed] [Google Scholar]
  23. Marini A. M., Soussi-Boudekou S., Vissers S., Andre B. A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Aug;17(8):4282–4293. doi: 10.1128/mcb.17.8.4282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marini A. M., Springael J. Y., Frommer W. B., André B. Cross-talk between ammonium transporters in yeast and interference by the soybean SAT1 protein. Mol Microbiol. 2000 Jan;35(2):378–385. doi: 10.1046/j.1365-2958.2000.01704.x. [DOI] [PubMed] [Google Scholar]
  25. Marini A. M., Urrestarazu A., Beauwens R., André B. The Rh (rhesus) blood group polypeptides are related to NH4+ transporters. Trends Biochem Sci. 1997 Dec;22(12):460–461. doi: 10.1016/s0968-0004(97)01132-8. [DOI] [PubMed] [Google Scholar]
  26. Marini A. M., Vissers S., Urrestarazu A., André B. Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J. 1994 Aug 1;13(15):3456–3463. doi: 10.1002/j.1460-2075.1994.tb06651.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meier-Wagner J., Nolden L., Jakoby M., Siewe R., Krämer R., Burkovski A. Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtB. Microbiology. 2001 Jan;147(Pt 1):135–143. doi: 10.1099/00221287-147-1-135. [DOI] [PubMed] [Google Scholar]
  28. Miroux B., Walker J. E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol. 1996 Jul 19;260(3):289–298. doi: 10.1006/jmbi.1996.0399. [DOI] [PubMed] [Google Scholar]
  29. Montesinos M. L., Muro-Pastor A. M., Herrero A., Flores E. Ammonium/methylammonium permeases of a Cyanobacterium. Identification and analysis of three nitrogen-regulated amt genes in synechocystis sp. PCC 6803. J Biol Chem. 1998 Nov 20;273(47):31463–31470. doi: 10.1074/jbc.273.47.31463. [DOI] [PubMed] [Google Scholar]
  30. Møller J. V., le Maire M. Detergent binding as a measure of hydrophobic surface area of integral membrane proteins. J Biol Chem. 1993 Sep 5;268(25):18659–18672. [PubMed] [Google Scholar]
  31. Ninnemann O., Jauniaux J. C., Frommer W. B. Identification of a high affinity NH4+ transporter from plants. EMBO J. 1994 Aug 1;13(15):3464–3471. doi: 10.1002/j.1460-2075.1994.tb06652.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Siewe R. M., Weil B., Burkovski A., Eikmanns B. J., Eikmanns M., Krämer R. Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. J Biol Chem. 1996 Mar 8;271(10):5398–5403. doi: 10.1074/jbc.271.10.5398. [DOI] [PubMed] [Google Scholar]
  34. Simmerman H. K., Collins J. H., Theibert J. L., Wegener A. D., Jones L. R. Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem. 1986 Oct 5;261(28):13333–13341. [PubMed] [Google Scholar]
  35. Soupene E., He L., Yan D., Kustu S. Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7030–7034. doi: 10.1073/pnas.95.12.7030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  37. Tate C. G., Kunji E. R., Lebendiker M., Schuldiner S. The projection structure of EmrE, a proton-linked multidrug transporter from Escherichia coli, at 7 A resolution. EMBO J. 2001 Jan 15;20(1-2):77–81. doi: 10.1093/emboj/20.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Taté R., Riccio A., Merrick M., Patriarca E. J. The Rhizobium etli amtB gene coding for an NH4+ transporter is down-regulated early during bacteroid differentiation. Mol Plant Microbe Interact. 1998 Mar;11(3):188–198. doi: 10.1094/MPMI.1998.11.3.188. [DOI] [PubMed] [Google Scholar]
  39. Thomas G. H., Mullins J. G., Merrick M. Membrane topology of the Mep/Amt family of ammonium transporters. Mol Microbiol. 2000 Jul;37(2):331–344. doi: 10.1046/j.1365-2958.2000.01994.x. [DOI] [PubMed] [Google Scholar]
  40. Thomas G., Coutts G., Merrick M. The glnKamtB operon. A conserved gene pair in prokaryotes. Trends Genet. 2000 Jan;16(1):11–14. doi: 10.1016/s0168-9525(99)01887-9. [DOI] [PubMed] [Google Scholar]
  41. Wang D. N., Sarabia V. E., Reithmeier R. A., Kühlbrandt W. Three-dimensional map of the dimeric membrane domain of the human erythrocyte anion exchanger, Band 3. EMBO J. 1994 Jul 15;13(14):3230–3235. doi: 10.1002/j.1460-2075.1994.tb06624.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wang R. F., Kushner S. R. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene. 1991 Apr;100:195–199. [PubMed] [Google Scholar]
  43. Williams K. A. Three-dimensional structure of the ion-coupled transport protein NhaA. Nature. 2000 Jan 6;403(6765):112–115. doi: 10.1038/47534. [DOI] [PubMed] [Google Scholar]
  44. Yin C. C., Aldema-Ramos M. L., Borges-Walmsley M. I., Taylor R. W., Walmsley A. R., Levy S. B., Bullough P. A. The quarternary molecular architecture of TetA, a secondary tetracycline transporter from Escherichia coli. Mol Microbiol. 2000 Nov;38(3):482–492. doi: 10.1046/j.1365-2958.2000.02149.x. [DOI] [PubMed] [Google Scholar]
  45. Zhuang J., Privé G. G., Werner G. E., Ringler P., Kaback H. R., Engel A. Two-dimensional crystallization of Escherichia coli lactose permease. J Struct Biol. 1999 Mar;125(1):63–75. doi: 10.1006/jsbi.1998.4059. [DOI] [PubMed] [Google Scholar]
  46. le Maire M., Champeil P., Moller J. V. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta. 2000 Nov 23;1508(1-2):86–111. doi: 10.1016/s0304-4157(00)00010-1. [DOI] [PubMed] [Google Scholar]
  47. van Heeswijk W. C., Hoving S., Molenaar D., Stegeman B., Kahn D., Westerhoff H. V. An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol Microbiol. 1996 Jul;21(1):133–146. doi: 10.1046/j.1365-2958.1996.6281349.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES