Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 1;364(Pt 2):571–577. doi: 10.1042/BJ20011703

Repression of Smad2 and Smad3 transactivating activity by association with a novel splice variant of CCAAT-binding factor C subunit.

Feifei Chen 1, Kenji Ogawa 1, Xubao Liu 1, Teresa M Stringfield 1, Yan Chen 1
PMCID: PMC1222603  PMID: 12023901

Abstract

Activation by transforming growth factor-beta (TGF-beta)/activin receptors leads to phosphorylation of Smad2 (Sma- and Mad-related protein 2) and Smad3, which function as transcription factors to regulate gene expression. Using the MH2 domain (Mad homologue domain of Smad proteins 2) of Smad3 in a yeast two-hybrid screening, we isolated a novel splice variant of CAATT-binding factor subunit C (CBF-C), designated CBF-Cb, that associated with Smad3. CBF-C is one of the subunits that form a heterotrimeric CBF complex capable of binding and activating the CAATT motif found in the promoters of many eukaryotic genes. CBF-Cb is 62 amino acids shorter than the wild-type CBF-C in the N-terminal region. In addition, CBF-Cb is expressed ubiquitously in various mouse tissues. By an immunoprecipitation assay, we detected an in vivo association of CBF-Cb with Smad2 and Smad3, independent of signalling by activated TGF-beta type I receptors. In transient transfection experiments, overexpression of CBF-Cb was able to repress the transactivating activity of Smad2 and Smad3, mediated either by direct binding to the Smad-responsive element or through their association with the Smad-interacting transcription factor FAST-2 (forkhead activin signal transducer-2). The Smad-mediated transcriptional response after TGF-beta receptor activation was also inhibited by overexpression of unspliced CBF-C. In addition, the repressive activity of CBF-Cb on Smad2- and Smad3-mediated transcriptional regulation was abrogated by co-expression of the general transcription activator p300. The association of CBF-Cb with Smad2 was competitively inhibited by overexpression of p300. These data indicate a novel mechanism for modulation of the transcriptional activity of Smad proteins, whereby the interaction of CBF-Cb, as well as canonical CBF-C, with the MH2 domain of Smads may prevent the association of Smads with transcriptional co-activators.

Full Text

The Full Text of this article is available as a PDF (182.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aslakson C. J., Miller F. R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992 Mar 15;52(6):1399–1405. [PubMed] [Google Scholar]
  2. Bai S., Shi X., Yang X., Cao X. Smad6 as a transcriptional corepressor. J Biol Chem. 2000 Mar 24;275(12):8267–8270. doi: 10.1074/jbc.275.12.8267. [DOI] [PubMed] [Google Scholar]
  3. Chen X., Rubock M. J., Whitman M. A transcriptional partner for MAD proteins in TGF-beta signalling. Nature. 1996 Oct 24;383(6602):691–696. doi: 10.1038/383691a0. [DOI] [PubMed] [Google Scholar]
  4. Chen Y., Lebrun J. J., Vale W. Regulation of transforming growth factor beta- and activin-induced transcription by mammalian Mad proteins. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12992–12997. doi: 10.1073/pnas.93.23.12992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chodosh L. A., Baldwin A. S., Carthew R. W., Sharp P. A. Human CCAAT-binding proteins have heterologous subunits. Cell. 1988 Apr 8;53(1):11–24. doi: 10.1016/0092-8674(88)90483-7. [DOI] [PubMed] [Google Scholar]
  6. Coustry F., Sinha S., Maity S. N., Crombrugghe B. The two activation domains of the CCAAT-binding factor CBF interact with the dTAFII110 component of the Drosophila TFIID complex. Biochem J. 1998 Apr 1;331(Pt 1):291–297. doi: 10.1042/bj3310291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Currie R. A. NF-Y is associated with the histone acetyltransferases GCN5 and P/CAF. J Biol Chem. 1998 Jan 16;273(3):1430–1434. doi: 10.1074/jbc.273.3.1430. [DOI] [PubMed] [Google Scholar]
  8. Dorn A., Bollekens J., Staub A., Benoist C., Mathis D. A multiplicity of CCAAT box-binding proteins. Cell. 1987 Sep 11;50(6):863–872. doi: 10.1016/0092-8674(87)90513-7. [DOI] [PubMed] [Google Scholar]
  9. Faniello M. C., Bevilacqua M. A., Condorelli G., de Crombrugghe B., Maity S. N., Avvedimento V. E., Cimino F., Costanzo F. The B subunit of the CAAT-binding factor NFY binds the central segment of the Co-activator p300. J Biol Chem. 1999 Mar 19;274(12):7623–7626. doi: 10.1074/jbc.274.12.7623. [DOI] [PubMed] [Google Scholar]
  10. Feng X. H., Zhang Y., Wu R. Y., Derynck R. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev. 1998 Jul 15;12(14):2153–2163. doi: 10.1101/gad.12.14.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heldin C. H., Miyazono K., ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997 Dec 4;390(6659):465–471. doi: 10.1038/37284. [DOI] [PubMed] [Google Scholar]
  12. Huang H. C., Murtaugh L. C., Vize P. D., Whitman M. Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo. EMBO J. 1995 Dec 1;14(23):5965–5973. doi: 10.1002/j.1460-2075.1995.tb00285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ishida W., Hamamoto T., Kusanagi K., Yagi K., Kawabata M., Takehara K., Sampath T. K., Kato M., Miyazono K. Smad6 is a Smad1/5-induced smad inhibitor. Characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter. J Biol Chem. 2000 Mar 3;275(9):6075–6079. doi: 10.1074/jbc.275.9.6075. [DOI] [PubMed] [Google Scholar]
  14. Janknecht R., Wells N. J., Hunter T. TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev. 1998 Jul 15;12(14):2114–2119. doi: 10.1101/gad.12.14.2114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kim I. S., Sinha S., de Crombrugghe B., Maity S. N. Determination of functional domains in the C subunit of the CCAAT-binding factor (CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both the CBF-A and CBF-C subunits to form a heterotrimeric CBF molecule. Mol Cell Biol. 1996 Aug;16(8):4003–4013. doi: 10.1128/mcb.16.8.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim J., Johnson K., Chen H. J., Carroll S., Laughon A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature. 1997 Jul 17;388(6639):304–308. doi: 10.1038/40906. [DOI] [PubMed] [Google Scholar]
  17. Labbé E., Silvestri C., Hoodless P. A., Wrana J. L., Attisano L. Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell. 1998 Jul;2(1):109–120. doi: 10.1016/s1097-2765(00)80119-7. [DOI] [PubMed] [Google Scholar]
  18. Liberati N. T., Moniwa M., Borton A. J., Davie J. R., Wang X. F. An essential role for Mad homology domain 1 in the association of Smad3 with histone deacetylase activity*. J Biol Chem. 2001 Apr 16;276(25):22595–22603. doi: 10.1074/jbc.M010778200. [DOI] [PubMed] [Google Scholar]
  19. Liu F., Hata A., Baker J. C., Doody J., Cárcamo J., Harland R. M., Massagué J. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature. 1996 Jun 13;381(6583):620–623. doi: 10.1038/381620a0. [DOI] [PubMed] [Google Scholar]
  20. Luo K., Stroschein S. L., Wang W., Chen D., Martens E., Zhou S., Zhou Q. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev. 1999 Sep 1;13(17):2196–2206. doi: 10.1101/gad.13.17.2196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maity S. N., Golumbek P. T., Karsenty G., de Crombrugghe B. Selective activation of transcription by a novel CCAAT binding factor. Science. 1988 Jul 29;241(4865):582–585. doi: 10.1126/science.3399893. [DOI] [PubMed] [Google Scholar]
  22. Massagué J., Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000 Apr 17;19(8):1745–1754. doi: 10.1093/emboj/19.8.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagarajan R. P., Chen F., Li W., Vig E., Harrington M. A., Nakshatri H., Chen Y. Repression of transforming-growth-factor-beta-mediated transcription by nuclear factor kappaB. Biochem J. 2000 Jun 15;348(Pt 3):591–596. [PMC free article] [PubMed] [Google Scholar]
  24. Nagarajan R. P., Zhang J., Li W., Chen Y. Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J Biol Chem. 1999 Nov 19;274(47):33412–33418. doi: 10.1074/jbc.274.47.33412. [DOI] [PubMed] [Google Scholar]
  25. Pouponnot C., Jayaraman L., Massagué J. Physical and functional interaction of SMADs and p300/CBP. J Biol Chem. 1998 Sep 4;273(36):22865–22868. doi: 10.1074/jbc.273.36.22865. [DOI] [PubMed] [Google Scholar]
  26. Shi Y., Wang Y. F., Jayaraman L., Yang H., Massagué J., Pavletich N. P. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell. 1998 Sep 4;94(5):585–594. doi: 10.1016/s0092-8674(00)81600-1. [DOI] [PubMed] [Google Scholar]
  27. Sinha S., Maity S. N., Lu J., de Crombrugghe B. Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1624–1628. doi: 10.1073/pnas.92.5.1624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stroschein S. L., Wang W., Zhou S., Zhou Q., Luo K. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science. 1999 Oct 22;286(5440):771–774. doi: 10.1126/science.286.5440.771. [DOI] [PubMed] [Google Scholar]
  29. Sun Y., Liu X., Ng-Eaton E., Lodish H. F., Weinberg R. A. SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor beta signaling. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12442–12447. doi: 10.1073/pnas.96.22.12442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Verschueren K., Remacle J. E., Collart C., Kraft H., Baker B. S., Tylzanowski P., Nelles L., Wuytens G., Su M. T., Bodmer R. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5'-CACCT sequences in candidate target genes. J Biol Chem. 1999 Jul 16;274(29):20489–20498. doi: 10.1074/jbc.274.29.20489. [DOI] [PubMed] [Google Scholar]
  31. Weisberg E., Winnier G. E., Chen X., Farnsworth C. L., Hogan B. L., Whitman M. A mouse homologue of FAST-1 transduces TGF beta superfamily signals and is expressed during early embryogenesis. Mech Dev. 1998 Dec;79(1-2):17–27. doi: 10.1016/s0925-4773(98)00160-9. [DOI] [PubMed] [Google Scholar]
  32. Wotton D., Lo R. S., Lee S., Massagué J. A Smad transcriptional corepressor. Cell. 1999 Apr 2;97(1):29–39. doi: 10.1016/s0092-8674(00)80712-6. [DOI] [PubMed] [Google Scholar]
  33. Zawel L., Dai J. L., Buckhaults P., Zhou S., Kinzler K. W., Vogelstein B., Kern S. E. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell. 1998 Mar;1(4):611–617. doi: 10.1016/s1097-2765(00)80061-1. [DOI] [PubMed] [Google Scholar]
  34. Zhou S., Zawel L., Lengauer C., Kinzler K. W., Vogelstein B. Characterization of human FAST-1, a TGF beta and activin signal transducer. Mol Cell. 1998 Jul;2(1):121–127. doi: 10.1016/s1097-2765(00)80120-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES