Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 1;364(Pt 2):579–585. doi: 10.1042/BJ20011882

Reactive sulphur species: an in vitro investigation of the oxidation properties of disulphide S-oxides.

Gregory I Giles 1, Karen M Tasker 1, Catriona Collins 1, Niroshini M Giles 1, Elizabeth O'rourke 1, Claus Jacob 1
PMCID: PMC1222604  PMID: 12023902

Abstract

We have recently proposed that disulphide S-monoxides (thiosulphinates) and disulphide S-dioxides (thiosulphonates) are formed from their parent disulphides and 'reactive oxygen species' during oxidative stress. These 'reactive sulphur species' are themselves strong oxidizing agents that preferably attack the thiol functionality. We now show that under conditions where disulphides show little effect, disulphide S-oxides rapidly modify metallothionein, alcohol and glyceraldehyde 3-phosphate dehydrogenases and a zinc finger-protein fragment in vitro. The known antioxidants ascorbate, NADH, trolox and melatonin are unable to inhibit this oxidation pathway and only an excess of the cellular redox-buffer glutathione quenches the disulphide S-oxide activity. These results suggest that, under conditions of oxidative stress, despite the presence of high concentrations of antioxidants, reactive sulphur species formation may occur and inhibit the function of thiol-dependent proteins. Such a characterization of the disulphide S-oxide-oxidation pathway might also account for some previously observed anomalies in protein oxidation.

Full Text

The Full Text of this article is available as a PDF (138.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batke J., Keleti T., Fischer E. The mechanism of reaction of Cys- 149 of D-glyceraldehyde-3-phosphate dehydrogenase with p-hydroxy-mercuribenzoate. Eur J Biochem. 1974 Jul 15;46(2):307–315. doi: 10.1111/j.1432-1033.1974.tb03622.x. [DOI] [PubMed] [Google Scholar]
  2. Betteridge D. J. What is oxidative stress? Metabolism. 2000 Feb;49(2 Suppl 1):3–8. doi: 10.1016/s0026-0495(00)80077-3. [DOI] [PubMed] [Google Scholar]
  3. Bush A. I. Metals and neuroscience. Curr Opin Chem Biol. 2000 Apr;4(2):184–191. doi: 10.1016/s1367-5931(99)00073-3. [DOI] [PubMed] [Google Scholar]
  4. Devasagayam T. P., Sundquist A. R., Di Mascio P., Kaiser S., Sies H. Activity of thiols as singlet molecular oxygen quenchers. J Photochem Photobiol B. 1991 Apr;9(1):105–116. doi: 10.1016/1011-1344(91)80008-6. [DOI] [PubMed] [Google Scholar]
  5. Ding H., Demple B. Glutathione-mediated destabilization in vitro of [2Fe-2S] centers in the SoxR regulatory protein. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9449–9453. doi: 10.1073/pnas.93.18.9449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ding H., Demple B. Thiol-mediated disassembly and reassembly of [2Fe-2S] clusters in the redox-regulated transcription factor SoxR. Biochemistry. 1998 Dec 8;37(49):17280–17286. doi: 10.1021/bi980532g. [DOI] [PubMed] [Google Scholar]
  7. Finley J. W., Wheeler E. L., Witt S. C. Oxidation of glutathione by hydrogen peroxide and other oxidizing agents. J Agric Food Chem. 1981 Mar-Apr;29(2):404–407. doi: 10.1021/jf00104a045. [DOI] [PubMed] [Google Scholar]
  8. Fukushima D., Kim Y. H., Iyanagi T., Oae S. Enzymatic oxidation of disulfides and thiolsulfinates by both rabbit liver microsomes and a reconstituted system with purified cytochrome P-450. J Biochem. 1978 Apr;83(4):1019–1027. doi: 10.1093/oxfordjournals.jbchem.a131990. [DOI] [PubMed] [Google Scholar]
  9. Giles G. I., Tasker K. M., Jacob C. Hypothesis: the role of reactive sulfur species in oxidative stress. Free Radic Biol Med. 2001 Nov 15;31(10):1279–1283. doi: 10.1016/s0891-5849(01)00710-9. [DOI] [PubMed] [Google Scholar]
  10. Giles Gregory I., Jacob Claus. Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem. 2002 Mar-Apr;383(3-4):375–388. doi: 10.1515/BC.2002.042. [DOI] [PubMed] [Google Scholar]
  11. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  12. Jacob C., Arteel G. E., Kanda T., Engman L., Sies H. Water-soluble organotellurium compounds: catalytic protection against peroxynitrite and release of zinc from metallothionein. Chem Res Toxicol. 2000 Jan;13(1):3–9. doi: 10.1021/tx990156g. [DOI] [PubMed] [Google Scholar]
  13. Jacob C., Maret W., Vallee B. L. Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3489–3494. doi: 10.1073/pnas.95.7.3489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacob C., Maret W., Vallee B. L. Ebselen, a selenium-containing redox drug, releases zinc from metallothionein. Biochem Biophys Res Commun. 1998 Jul 30;248(3):569–573. doi: 10.1006/bbrc.1998.9026. [DOI] [PubMed] [Google Scholar]
  15. Jacob C., Maret W., Vallee B. L. Selenium redox biochemistry of zinc-sulfur coordination sites in proteins and enzymes. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1910–1914. doi: 10.1073/pnas.96.5.1910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kirsch M., De Groot H. NAD(P)H, a directly operating antioxidant? FASEB J. 2001 Jul;15(9):1569–1574. doi: 10.1096/fj.00-0823hyp. [DOI] [PubMed] [Google Scholar]
  17. Li J., Huang F. L., Huang K. P. Glutathiolation of proteins by glutathione disulfide S-oxide derived from S-nitrosoglutathione. Modifications of rat brain neurogranin/RC3 and neuromodulin/GAP-43. J Biol Chem. 2000 Nov 1;276(5):3098–3105. doi: 10.1074/jbc.M008260200. [DOI] [PubMed] [Google Scholar]
  18. Mannervik B., Axelsson K., Larson K. Thioltransferase. Methods Enzymol. 1981;77:281–285. doi: 10.1016/s0076-6879(81)77038-1. [DOI] [PubMed] [Google Scholar]
  19. Maret W., Jacob C., Vallee B. L., Fischer E. H. Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1936–1940. doi: 10.1073/pnas.96.5.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martínez A., Urios A., Blanco M. Mutagenicity of thiol compounds in Escherichia coli WP2 tester strain IC203, deficient in OxyR: effects of S9 fractions from rat liver and kidney. Mutat Res. 1999 Dec 13;446(2):205–213. doi: 10.1016/s1383-5718(99)00187-4. [DOI] [PubMed] [Google Scholar]
  21. Okamoto T., Akaike T., Sawa T., Miyamoto Y., van der Vliet A., Maeda H. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem. 2001 Jun 6;276(31):29596–29602. doi: 10.1074/jbc.M102417200. [DOI] [PubMed] [Google Scholar]
  22. Powis G., Gasdaska J. R., Baker A. Redox signaling and the control of cell growth and death. Adv Pharmacol. 1997;38:329–359. doi: 10.1016/s1054-3589(08)60990-4. [DOI] [PubMed] [Google Scholar]
  23. Rajca A., Bertram B., Eisenbarth J., Wiessler M. New mixed disulfides of L-cysteine derivatives and of glutathione with diethyldithiocarbamic acid and 2-mercaptoethanesulfonic acid. Arzneimittelforschung. 1990 Mar;40(3):282–286. [PubMed] [Google Scholar]
  24. Ross D. Glutathione, free radicals and chemotherapeutic agents. Mechanisms of free-radical induced toxicity and glutathione-dependent protection. Pharmacol Ther. 1988;37(2):231–249. doi: 10.1016/0163-7258(88)90027-7. [DOI] [PubMed] [Google Scholar]
  25. Sayre L. M., Perry G., Smith M. A. Redox metals and neurodegenerative disease. Curr Opin Chem Biol. 1999 Apr;3(2):220–225. doi: 10.1016/S1367-5931(99)80035-0. [DOI] [PubMed] [Google Scholar]
  26. Steinman H. M., Richards F. M. Participation of cysteinyl residues in the structure and function of muscle aldolase. Characterization of mixed disulfide derivatives. Biochemistry. 1970 Oct 27;9(22):4360–4372. doi: 10.1021/bi00824a017. [DOI] [PubMed] [Google Scholar]
  27. Teyssier C., Guenot L., Suschetet M., Siess M. H. Metabolism of diallyl disulfide by human liver microsomal cytochromes P-450 and flavin-containing monooxygenases. Drug Metab Dispos. 1999 Jul;27(7):835–841. [PubMed] [Google Scholar]
  28. Teyssier C., Siess M. H. Metabolism of dipropyl disulfide by rat liver phase I and phase II enzymes and by isolated perfused rat liver. Drug Metab Dispos. 2000 Jun;28(6):648–654. [PubMed] [Google Scholar]
  29. Twu J. S., Chin C. C., Wold F. Studies on the active-site sulfhydryyl groups of yeast alcohol dehydrogenase. Biochemistry. 1973 Jul 17;12(15):2856–2862. doi: 10.1021/bi00739a013. [DOI] [PubMed] [Google Scholar]
  30. Vallee B. L., Hoch F. L. ZINC, A COMPONENT OF YEAST ALCOHOL DEHYDROGENASE. Proc Natl Acad Sci U S A. 1955 Jun 15;41(6):327–338. doi: 10.1073/pnas.41.6.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wälti M., Hope D. B. Synthesis of the isomers of the mono- and di-hydroxy-analogues of cystine and comparison with metabolites excreted in the urine. J Chem Soc Perkin 1. 1971;12:2326–2328. doi: 10.1039/j39710002326. [DOI] [PubMed] [Google Scholar]
  32. de Rocquigny H., Ficheux D., Gabus C., Fournié-Zaluski M. C., Darlix J. L., Roques B. P. First large scale chemical synthesis of the 72 amino acid HIV-1 nucleocapsid protein NCp7 in an active form. Biochem Biophys Res Commun. 1991 Oct 31;180(2):1010–1018. doi: 10.1016/s0006-291x(05)81166-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES