Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 15;364(Pt 3):617–623. doi: 10.1042/BJ20020570

Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments.

José R Pedrajas 1, Pablo Porras 1, Emilia Martínez-Galisteo 1, C Alicia Padilla 1, Antonio Miranda-Vizuete 1, J Antonio Bárcena 1
PMCID: PMC1222607  PMID: 11958675

Abstract

Glutaredoxin (Grx)2 from Saccharomyces cerevisiae is a member of the two-cysteine (dithiol) subfamily of Grxs involved in the defence against oxidative stress in yeast. Recombinant yeast Grx2p, expressed in Escherichia coli, behaves as a 'classical' Grx that efficiently catalyses the reduction of hydroxyethyl disulphide by GSH. Grx2p also catalyses the reduction of GSSG by dihydrolipoamide with even higher efficiency. Western blot analysis of S. cerevisiae crude extracts identifies two isoforms of Grx2p of 15.9 and 11.9 kDa respectively. The levels of these two isoforms reach a peak during the exponential phase of growth in normal yeast extract/peptone/dextrose ('YPD') medium, with the long form predominating over the short one. From immunochemical analysis of subcellular fractions, it is shown that both isoforms are present in mitochondria, but only the short one is detected in the cytosolic fraction. On the other hand, only the long form is prominent in microsomes. Mitochondrial isoforms should represent the processed and unprocessed products of an open reading frame (YDR513W), with a putative start codon 99 bp upstream of the GRX2 start codon described thus far. These results indicate that GRX2 contains two in-frame start codons, and that translation from the first AUG results in a product that is targeted to mitochondria. The cytosolic form would result either by initiation from the second AUG, or by differential processing of one single translation product.

Full Text

The Full Text of this article is available as a PDF (264.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achleitner G., Gaigg B., Krasser A., Kainersdorfer E., Kohlwein S. D., Perktold A., Zellnig G., Daum G. Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur J Biochem. 1999 Sep;264(2):545–553. doi: 10.1046/j.1432-1327.1999.00658.x. [DOI] [PubMed] [Google Scholar]
  2. Bandyopadhyay S., Starke D. W., Mieyal J. J., Gronostajski R. M. Thioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor I. J Biol Chem. 1998 Jan 2;273(1):392–397. doi: 10.1074/jbc.273.1.392. [DOI] [PubMed] [Google Scholar]
  3. Bellomo G., Mirabelli F., DiMonte D., Richelmi P., Thor H., Orrenius C., Orrenius S. Formation and reduction of glutathione-protein mixed disulfides during oxidative stress. A study with isolated hepatocytes and menadione (2-methyl-1,4-naphthoquinone). Biochem Pharmacol. 1987 Apr 15;36(8):1313–1320. doi: 10.1016/0006-2952(87)90087-6. [DOI] [PubMed] [Google Scholar]
  4. Björnstedt M., Xue J., Huang W., Akesson B., Holmgren A. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem. 1994 Nov 25;269(47):29382–29384. [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Bushweller J. H., Aslund F., Wüthrich K., Holmgren A. Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14----S) and its mixed disulfide with glutathione. Biochemistry. 1992 Sep 29;31(38):9288–9293. doi: 10.1021/bi00153a023. [DOI] [PubMed] [Google Scholar]
  7. Cho Y. W., Kim H. G., Park E. H., Fuchs J. A., Lim C. J. Cloning, expression and regulation of Schizosaccharomyces pombe gene encoding thioltransferase. Biochim Biophys Acta. 2000 Dec 15;1517(1):171–175. doi: 10.1016/s0167-4781(00)00242-6. [DOI] [PubMed] [Google Scholar]
  8. Davis D. A., Newcomb F. M., Starke D. W., Ott D. E., Mieyal J. J., Yarchoan R. Thioltransferase (glutaredoxin) is detected within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitro. J Biol Chem. 1997 Oct 10;272(41):25935–25940. doi: 10.1074/jbc.272.41.25935. [DOI] [PubMed] [Google Scholar]
  9. Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000 Jul 21;300(4):1005–1016. doi: 10.1006/jmbi.2000.3903. [DOI] [PubMed] [Google Scholar]
  10. Gan Z. R. Cloning and sequencing of a gene encoding yeast thioltransferase. Biochem Biophys Res Commun. 1992 Sep 16;187(2):949–955. doi: 10.1016/0006-291x(92)91289-3. [DOI] [PubMed] [Google Scholar]
  11. Gladyshev V. N., Liu A., Novoselov S. V., Krysan K., Sun Q. A., Kryukov V. M., Kryukov G. V., Lou M. F. Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2. J Biol Chem. 2001 Jun 7;276(32):30374–30380. doi: 10.1074/jbc.M100020200. [DOI] [PubMed] [Google Scholar]
  12. Glick B. S., Pon L. A. Isolation of highly purified mitochondria from Saccharomyces cerevisiae. Methods Enzymol. 1995;260:213–223. doi: 10.1016/0076-6879(95)60139-2. [DOI] [PubMed] [Google Scholar]
  13. Grant C. M., Luikenhuis S., Beckhouse A., Soderbergh M., Dawes I. W. Differential regulation of glutaredoxin gene expression in response to stress conditions in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 2000 Jan 31;1490(1-2):33–42. doi: 10.1016/s0167-4781(99)00234-1. [DOI] [PubMed] [Google Scholar]
  14. Gravina S. A., Mieyal J. J. Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase. Biochemistry. 1993 Apr 6;32(13):3368–3376. doi: 10.1021/bi00064a021. [DOI] [PubMed] [Google Scholar]
  15. Holmgren A., Aslund F. Glutaredoxin. Methods Enzymol. 1995;252:283–292. doi: 10.1016/0076-6879(95)52031-7. [DOI] [PubMed] [Google Scholar]
  16. Holmgren A. Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275–2279. doi: 10.1073/pnas.73.7.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989 Aug 25;264(24):13963–13966. [PubMed] [Google Scholar]
  18. Ito A. Mitochondrial processing peptidase: multiple-site recognition of precursor proteins. Biochem Biophys Res Commun. 1999 Nov 30;265(3):611–616. doi: 10.1006/bbrc.1999.1703. [DOI] [PubMed] [Google Scholar]
  19. Jung C. H., Thomas J. A. S-glutathiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase, and glutathione. Arch Biochem Biophys. 1996 Nov 1;335(1):61–72. doi: 10.1006/abbi.1996.0482. [DOI] [PubMed] [Google Scholar]
  20. Knox C., Sass E., Neupert W., Pines O. Import into mitochondria, folding and retrograde movement of fumarase in yeast. J Biol Chem. 1998 Oct 2;273(40):25587–25593. doi: 10.1074/jbc.273.40.25587. [DOI] [PubMed] [Google Scholar]
  21. Luikenhuis S., Perrone G., Dawes I. W., Grant C. M. The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell. 1998 May;9(5):1081–1091. doi: 10.1091/mbc.9.5.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lundberg M., Johansson C., Chandra J., Enoksson M., Jacobsson G., Ljung J., Johansson M., Holmgren A. Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms. J Biol Chem. 2001 Apr 10;276(28):26269–26275. doi: 10.1074/jbc.M011605200. [DOI] [PubMed] [Google Scholar]
  23. Luthman M., Holmgren A. Glutaredoxin from calf thymus. Purification to homogeneity. J Biol Chem. 1982 Jun 25;257(12):6686–6690. [PubMed] [Google Scholar]
  24. Madden E. A., Storrie B. The preparative isolation of mitochondria from Chinese hamster ovary cells. Anal Biochem. 1987 Jun;163(2):350–357. doi: 10.1016/0003-2697(87)90235-1. [DOI] [PubMed] [Google Scholar]
  25. Pedrajas J. R., Kosmidou E., Miranda-Vizuete A., Gustafsson J. A., Wright A. P., Spyrou G. Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J Biol Chem. 1999 Mar 5;274(10):6366–6373. doi: 10.1074/jbc.274.10.6366. [DOI] [PubMed] [Google Scholar]
  26. Pedrajas J. R., Miranda-Vizuete A., Javanmardy N., Gustafsson J. A., Spyrou G. Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. J Biol Chem. 2000 May 26;275(21):16296–16301. doi: 10.1074/jbc.275.21.16296. [DOI] [PubMed] [Google Scholar]
  27. Pfanner N., Neupert W. The mitochondrial protein import apparatus. Annu Rev Biochem. 1990;59:331–353. doi: 10.1146/annurev.bi.59.070190.001555. [DOI] [PubMed] [Google Scholar]
  28. Rodríguez-Manzaneque M. T., Ros J., Cabiscol E., Sorribas A., Herrero E. Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Dec;19(12):8180–8190. doi: 10.1128/mcb.19.12.8180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sass E., Blachinsky E., Karniely S., Pines O. Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini. J Biol Chem. 2001 Oct 3;276(49):46111–46117. doi: 10.1074/jbc.M106061200. [DOI] [PubMed] [Google Scholar]
  30. Seres T., Ravichandran V., Moriguchi T., Rokutan K., Thomas J. A., Johnston R. B., Jr Protein S-thiolation and dethiolation during the respiratory burst in human monocytes. A reversible post-translational modification with potential for buffering the effects of oxidant stress. J Immunol. 1996 Mar 1;156(5):1973–1980. [PubMed] [Google Scholar]
  31. Slusher L. B., Gillman E. C., Martin N. C., Hopper A. K. mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9789–9793. doi: 10.1073/pnas.88.21.9789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Souciet G., Menand B., Ovesna J., Cosset A., Dietrich A., Wintz H. Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur J Biochem. 1999 Dec;266(3):848–854. doi: 10.1046/j.1432-1327.1999.00922.x. [DOI] [PubMed] [Google Scholar]
  33. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Xia B., Vlamis-Gardikas A., Holmgren A., Wright P. E., Dyson H. J. Solution structure of Escherichia coli glutaredoxin-2 shows similarity to mammalian glutathione-S-transferases. J Mol Biol. 2001 Jul 20;310(4):907–918. doi: 10.1006/jmbi.2001.4721. [DOI] [PubMed] [Google Scholar]
  35. Yang Y., Jao S. c., Nanduri S., Starke D. W., Mieyal J. J., Qin J. Reactivity of the human thioltransferase (glutaredoxin) C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflect catalytic specificity. Biochemistry. 1998 Dec 8;37(49):17145–17156. doi: 10.1021/bi9806504. [DOI] [PubMed] [Google Scholar]
  36. Zinser E., Sperka-Gottlieb C. D., Fasch E. V., Kohlwein S. D., Paltauf F., Daum G. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol. 1991 Mar;173(6):2026–2034. doi: 10.1128/jb.173.6.2026-2034.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES