Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 15;364(Pt 3):695–702. doi: 10.1042/BJ20020142

Roles of various phospholipases A2 in providing lysophospholipid acceptors for fatty acid phospholipid incorporation and remodelling.

Jesús Balsinde 1
PMCID: PMC1222618  PMID: 12049633

Abstract

In the present study the lysophospholipid sources for arachidonic (AA) and eicosapentaenoic acid (EPA) incorporation into and redistribution within the phospholipids of phorbol-ester-differentiated U937 cells was investigated. Initially, AA incorporated primarily into choline glycerophospholipids (PC), whereas EPA incorporated mainly into ethanolamine glycerophospholipids (PE). Bromoenol lactone (BEL), an inhibitor of the Group VI Ca2+-independent phospholipase A2 (iPLA2), diminished both lysophosphatidylcholine levels and the incorporation of AA into phospholipids. However BEL had little effect on EPA incorporation. In concanavalin A-activated cells, EPA, but not AA, incorporation was also affected by methyl arachidonyl fluorophosphonate (MAFP), suggesting an additional role for the group IV cytosolic phospholipase A2. In the activated cells AA and EPA did not compete with each other for incorporation, indicating that the pathways for AA and EPA incorporation are partially different. The AA and EPA initially incorporated into PC slowly moved to PE in a process that took several hours. The transfer of AA and EPA from PC to PE was not inhibited by BEL, MAFP or LY311727 [3-(3-acetamide 1-benzyl-2-ethylindolyl-5-oxy)propanesulphonic acid], raising the possibility that an as-yet-undetermined phospholipase A2 may be involved in fatty acid phospholipid remodelling. A strong candidate to be involved in these reactions is a novel Ca2+-independent phospholipase A2 that, unlike all known iPLA2s, is resistant to inhibition by BEL and also to MAFP and LY311727. The enzyme activity cleaves both PC and PE and is thus able to provide the lysoPC and lysoPE acceptors required for the fatty acid acylation reactions.

Full Text

The Full Text of this article is available as a PDF (152.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alzola E., Pérez-Etxebarria A., Kabré E., Fogarty D. J., Métioui M., Chaïb N., Macarulla J. M., Matute C., Dehaye J. P., Marino A. Activation by P2X7 agonists of two phospholipases A2 (PLA2) in ductal cells of rat submandibular gland. Coupling of the calcium-independent PLA2 with kallikrein secretion. J Biol Chem. 1998 Nov 13;273(46):30208–30217. doi: 10.1074/jbc.273.46.30208. [DOI] [PubMed] [Google Scholar]
  2. Balboa M. A., Balsinde J., Jones S. S., Dennis E. A. Identity between the Ca2+-independent phospholipase A2 enzymes from P388D1 macrophages and Chinese hamster ovary cells. J Biol Chem. 1997 Mar 28;272(13):8576–8580. doi: 10.1074/jbc.272.13.8576. [DOI] [PubMed] [Google Scholar]
  3. Balsinde J., Balboa M. A., Dennis E. A. Antisense inhibition of group VI Ca2+-independent phospholipase A2 blocks phospholipid fatty acid remodeling in murine P388D1 macrophages. J Biol Chem. 1997 Nov 14;272(46):29317–29321. doi: 10.1074/jbc.272.46.29317. [DOI] [PubMed] [Google Scholar]
  4. Balsinde J., Balboa M. A., Dennis E. A. Identification of a third pathway for arachidonic acid mobilization and prostaglandin production in activated P388D1 macrophage-like cells. J Biol Chem. 2000 Jul 21;275(29):22544–22549. doi: 10.1074/jbc.M910163199. [DOI] [PubMed] [Google Scholar]
  5. Balsinde J., Balboa M. A., Insel P. A., Dennis E. A. Regulation and inhibition of phospholipase A2. Annu Rev Pharmacol Toxicol. 1999;39:175–189. doi: 10.1146/annurev.pharmtox.39.1.175. [DOI] [PubMed] [Google Scholar]
  6. Balsinde J., Barbour S. E., Bianco I. D., Dennis E. A. Arachidonic acid mobilization in P388D1 macrophages is controlled by two distinct Ca(2+)-dependent phospholipase A2 enzymes. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11060–11064. doi: 10.1073/pnas.91.23.11060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Balsinde J., Bianco I. D., Ackermann E. J., Conde-Frieboes K., Dennis E. A. Inhibition of calcium-independent phospholipase A2 prevents arachidonic acid incorporation and phospholipid remodeling in P388D1 macrophages. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8527–8531. doi: 10.1073/pnas.92.18.8527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Balsinde J., Dennis E. A. Distinct roles in signal transduction for each of the phospholipase A2 enzymes present in P388D1 macrophages. J Biol Chem. 1996 Mar 22;271(12):6758–6765. doi: 10.1074/jbc.271.12.6758. [DOI] [PubMed] [Google Scholar]
  9. Balsinde J., Diez E., Schüller A., Mollinedo F. Phospholipase A2 activity in resting and activated human neutrophils. Substrate specificity, pH dependence, and subcellular localization. J Biol Chem. 1988 Feb 5;263(4):1929–1936. [PubMed] [Google Scholar]
  10. Balsinde J., Fernández B., Solís-Herruzo J. A., Diez E. Pathways for arachidonic acid mobilization in zymosan-stimulated mouse peritoneal macrophages. Biochim Biophys Acta. 1992 Jul 22;1136(1):75–82. doi: 10.1016/0167-4889(92)90087-r. [DOI] [PubMed] [Google Scholar]
  11. Balsinde J., Fernández B., Solís-Herruzo J. A. Increased incorporation of arachidonic acid into phospholipids in zymosan-stimulated mouse peritoneal macrophages. Eur J Biochem. 1994 May 1;221(3):1013–1018. doi: 10.1111/j.1432-1033.1994.tb18818.x. [DOI] [PubMed] [Google Scholar]
  12. Balsinde J., Mollinedo F. Induction of the oxidative response and of concanavalin A-binding capacity in maturing human U937 cells. Biochim Biophys Acta. 1990 Apr 9;1052(1):90–95. doi: 10.1016/0167-4889(90)90061-h. [DOI] [PubMed] [Google Scholar]
  13. Balsinde J., Mollinedo F. Specific activation by concanavalin A of the superoxide anion generation capacity during U937 differentiation. Biochem Biophys Res Commun. 1988 Mar 15;151(2):802–808. doi: 10.1016/s0006-291x(88)80352-8. [DOI] [PubMed] [Google Scholar]
  14. Birbes H., Drevet S., Pageaux J. F., Lagarde M., Laugier C. Involvement of calcium-independent phospholipase A2 in uterine stromal cell phospholipid remodelling. Eur J Biochem. 2000 Dec;267(24):7118–7127. doi: 10.1046/j.1432-1327.2000.01814.x. [DOI] [PubMed] [Google Scholar]
  15. Blank M. L., Smith Z. L., Snyder F. Contributing factors in the trafficking of [3H]arachidonate between phospholipids. Biochim Biophys Acta. 1992 Mar 25;1124(3):262–272. doi: 10.1016/0005-2760(92)90138-l. [DOI] [PubMed] [Google Scholar]
  16. Boilard E., Surette M. E. Anti-CD3 and concanavalin A-induced human T cell proliferation is associated with an increased rate of arachidonate-phospholipid remodeling. Lack of involvement of group IV and group VI phospholipase A2 in remodeling and increased susceptibility of proliferating T cells to CoA-independent transacyclase inhibitor-induced apoptosis. J Biol Chem. 2001 Feb 22;276(20):17568–17575. doi: 10.1074/jbc.M006152200. [DOI] [PubMed] [Google Scholar]
  17. Burke J. R., Davern L. B., Gregor K. R., Todderud G., Alford J. G., Tramposch K. M. Phosphorylation and calcium influx are not sufficient for the activation of cytosolic phospholipase A2 in U937 cells: requirement for a Gi alpha-type G-protein. Biochim Biophys Acta. 1997 Sep 5;1341(2):223–237. doi: 10.1016/s0167-4838(97)00085-x. [DOI] [PubMed] [Google Scholar]
  18. Chilton F. H., Connell T. R. 1-ether-linked phosphoglycerides. Major endogenous sources of arachidonate in the human neutrophil. J Biol Chem. 1988 Apr 15;263(11):5260–5265. [PubMed] [Google Scholar]
  19. Chilton F. H., Fonteh A. N., Surette M. E., Triggiani M., Winkler J. D. Control of arachidonate levels within inflammatory cells. Biochim Biophys Acta. 1996 Jan 5;1299(1):1–15. doi: 10.1016/0005-2760(95)00169-7. [DOI] [PubMed] [Google Scholar]
  20. Chilton F. H., Murphy R. C. Remodeling of arachidonate-containing phosphoglycerides within the human neutrophil. J Biol Chem. 1986 Jun 15;261(17):7771–7777. [PubMed] [Google Scholar]
  21. Clark J. D., Milona N., Knopf J. L. Purification of a 110-kilodalton cytosolic phospholipase A2 from the human monocytic cell line U937. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7708–7712. doi: 10.1073/pnas.87.19.7708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Daniele J. J., Fidelio G. D., Bianco I. D. Calcium dependency of arachidonic acid incorporation into cellular phospholipids of different cell types. Prostaglandins Other Lipid Mediat. 1999 Jul;57(5-6):341–350. doi: 10.1016/s0090-6980(98)00084-7. [DOI] [PubMed] [Google Scholar]
  23. Diez E., Mong S. Purification of a phospholipase A2 from human monocytic leukemic U937 cells. Calcium-dependent activation and membrane association. J Biol Chem. 1990 Aug 25;265(24):14654–14661. [PubMed] [Google Scholar]
  24. Fernández B., Solís-Herruzo J. A., Balsinde J. Mouse peritoneal macrophages contain an acylating system specific for twenty-carbon polyunsaturated fatty acids. A study with intact cells. Eicosanoids. 1992;5(2):115–120. [PubMed] [Google Scholar]
  25. Gross R. W., Rudolph A. E., Wang J., Sommers C. D., Wolf M. J. Nitric oxide activates the glucose-dependent mobilization of arachidonic acid in a macrophage-like cell line (RAW 264.7) that is largely mediated by calcium-independent phospholipase A2. J Biol Chem. 1995 Jun 23;270(25):14855–14858. doi: 10.1074/jbc.270.25.14855. [DOI] [PubMed] [Google Scholar]
  26. Hsu F. F., Ma Z., Wohltmann M., Bohrer A., Nowatzke W., Ramanadham S., Turk J. Electrospray ionization/mass spectrometric analyses of human promonocytic U937 cell glycerolipids and evidence that differentiation is associated with membrane lipid composition changes that facilitate phospholipase A2 activation. J Biol Chem. 2000 Jun 2;275(22):16579–16589. doi: 10.1074/jbc.M908342199. [DOI] [PubMed] [Google Scholar]
  27. Irvine R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J. 1982 Apr 15;204(1):3–16. doi: 10.1042/bj2040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kramer R. M., Roberts E. F., Manetta J., Putnam J. E. The Ca2(+)-sensitive cytosolic phospholipase A2 is a 100-kDa protein in human monoblast U937 cells. J Biol Chem. 1991 Mar 15;266(8):5268–5272. [PubMed] [Google Scholar]
  29. Lands W. E. Stories about acyl chains. Biochim Biophys Acta. 2000 Jan 3;1483(1):1–14. doi: 10.1016/s1388-1981(99)00177-8. [DOI] [PubMed] [Google Scholar]
  30. Larsson Forsell P. K., Runarsson G., Ibrahim M., Björkholm M., Claesson H. E. On the expression of cytosolic calcium-independent phospholipase A2 (88kDa) in immature and mature myeloid cells and its role in leukotriene synthesis in human granulocytes. FEBS Lett. 1998 Sep 4;434(3):295–299. doi: 10.1016/s0014-5793(98)00999-5. [DOI] [PubMed] [Google Scholar]
  31. Larsson P. K., Claesson H. E., Kennedy B. P. Multiple splice variants of the human calcium-independent phospholipase A2 and their effect on enzyme activity. J Biol Chem. 1998 Jan 2;273(1):207–214. doi: 10.1074/jbc.273.1.207. [DOI] [PubMed] [Google Scholar]
  32. Lokesh B. R., Kinsella J. E. Effects of n-3 polyunsaturated fatty acids on the reacylation of arachidonic acid in peritoneal macrophages. Prostaglandins Leukot Essent Fatty Acids. 1994 Oct;51(4):235–239. doi: 10.1016/0952-3278(94)90185-6. [DOI] [PubMed] [Google Scholar]
  33. Ma Z., Ramanadham S., Kempe K., Chi X. S., Ladenson J., Turk J. Pancreatic islets express a Ca2+-independent phospholipase A2 enzyme that contains a repeated structural motif homologous to the integral membrane protein binding domain of ankyrin. J Biol Chem. 1997 Apr 25;272(17):11118–11127. [PubMed] [Google Scholar]
  34. Ma Z., Ramanadham S., Wohltmann M., Bohrer A., Hsu F. F., Turk J. Studies of insulin secretory responses and of arachidonic acid incorporation into phospholipids of stably transfected insulinoma cells that overexpress group VIA phospholipase A2 (iPLA2beta ) indicate a signaling rather than a housekeeping role for iPLA2beta. J Biol Chem. 2001 Jan 22;276(16):13198–13208. doi: 10.1074/jbc.M010423200. [DOI] [PubMed] [Google Scholar]
  35. MacDonald J. I., Sprecher H. Phospholipid fatty acid remodeling in mammalian cells. Biochim Biophys Acta. 1991 Jul 9;1084(2):105–121. doi: 10.1016/0005-2760(91)90209-z. [DOI] [PubMed] [Google Scholar]
  36. Marshall J., Krump E., Lindsay T., Downey G., Ford D. A., Zhu P., Walker P., Rubin B. Involvement of cytosolic phospholipase A2 and secretory phospholipase A2 in arachidonic acid release from human neutrophils. J Immunol. 2000 Feb 15;164(4):2084–2091. doi: 10.4049/jimmunol.164.4.2084. [DOI] [PubMed] [Google Scholar]
  37. McHowat J., Creer M. H. Selective plasmalogen substrate utilization by thrombin-stimulated Ca(2+)-independent PLA(2) in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H1933–H1940. doi: 10.1152/ajpheart.2000.278.6.H1933. [DOI] [PubMed] [Google Scholar]
  38. Nieto M. L., Venable M. E., Bauldry S. A., Greene D. G., Kennedy M., Bass D. A., Wykle R. L. Evidence that hydrolysis of ethanolamine plasmalogens triggers synthesis of platelet-activating factor via a transacylation reaction. J Biol Chem. 1991 Oct 5;266(28):18699–18706. [PubMed] [Google Scholar]
  39. Ramanadham S., Hsu F. F., Bohrer A., Ma Z., Turk J. Studies of the role of group VI phospholipase A2 in fatty acid incorporation, phospholipid remodeling, lysophosphatidylcholine generation, and secretagogue-induced arachidonic acid release in pancreatic islets and insulinoma cells. J Biol Chem. 1999 May 14;274(20):13915–13927. doi: 10.1074/jbc.274.20.13915. [DOI] [PubMed] [Google Scholar]
  40. Ramanadham S., Wolf M. J., Li B., Bohrer A., Turk J. Glucose-responsitivity and expression of an ATP-stimulatable, Ca(2+)-independent phospholipase A2 enzyme in clonal insulinoma cell lines. Biochim Biophys Acta. 1997 Jan 21;1344(2):153–164. doi: 10.1016/s0005-2760(96)00139-7. [DOI] [PubMed] [Google Scholar]
  41. Reinhold S. L., Zimmerman G. A., Prescott S. M., McIntyre T. M. Phospholipid remodeling in human neutrophils. Parallel activation of a deacylation/reacylation cycle and platelet-activating factor synthesis. J Biol Chem. 1989 Dec 25;264(36):21652–21659. [PubMed] [Google Scholar]
  42. Rzigalinski B. A., Blackmore P. F., Rosenthal M. D. Arachidonate mobilization is coupled to depletion of intracellular calcium stores and influx of extracellular calcium in differentiated U937 cells. Biochim Biophys Acta. 1996 Feb 16;1299(3):342–352. doi: 10.1016/0005-2760(95)00224-3. [DOI] [PubMed] [Google Scholar]
  43. Six D. A., Dennis E. A. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta. 2000 Oct 31;1488(1-2):1–19. doi: 10.1016/s1388-1981(00)00105-0. [DOI] [PubMed] [Google Scholar]
  44. Solito E., Raguenes-Nicol C., de Coupade C., Bisagni-Faure A., Russo-Marie F. U937 cells deprived of endogenous annexin 1 demonstrate an increased PLA2 activity. Br J Pharmacol. 1998 Aug;124(8):1675–1683. doi: 10.1038/sj.bjp.0701991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Surette M. E., Winkler J. D., Fonteh A. N., Chilton F. H. Relationship between arachidonate--phospholipid remodeling and apoptosis. Biochemistry. 1996 Jul 16;35(28):9187–9196. doi: 10.1021/bi9530245. [DOI] [PubMed] [Google Scholar]
  46. Tang J., Kriz R. W., Wolfman N., Shaffer M., Seehra J., Jones S. S. A novel cytosolic calcium-independent phospholipase A2 contains eight ankyrin motifs. J Biol Chem. 1997 Mar 28;272(13):8567–8575. doi: 10.1074/jbc.272.13.8567. [DOI] [PubMed] [Google Scholar]
  47. Tou J. S. Platelet-activating factor regulates phospholipid metabolism in human neutrophils. Lipids. 1989 Sep;24(9):812–817. doi: 10.1007/BF02544589. [DOI] [PubMed] [Google Scholar]
  48. Williams S. D., Hsu F. F., Ford D. A. Electrospray ionization mass spectrometry analyses of nuclear membrane phospholipid loss after reperfusion of ischemic myocardium. J Lipid Res. 2000 Oct;41(10):1585–1595. [PubMed] [Google Scholar]
  49. Winstead M. V., Balsinde J., Dennis E. A. Calcium-independent phospholipase A(2): structure and function. Biochim Biophys Acta. 2000 Oct 31;1488(1-2):28–39. doi: 10.1016/s1388-1981(00)00107-4. [DOI] [PubMed] [Google Scholar]
  50. Yamashita A., Sugiura T., Waku K. Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J Biochem. 1997 Jul;122(1):1–16. doi: 10.1093/oxfordjournals.jbchem.a021715. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES