Abstract
Activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) requires dimerization that is induced by phosphorylation of Tyr705, but its activity can be further modulated by phosphorylation at Ser727 in a manner that is dependent on cell context and the stimulus used. The role of STAT3 Ser727 phosphorylation in leptin signalling is currently not known. While cells transfected with the signalling-competent long form of the leptin receptor (ObRb) have been used to study leptin signalling, these are likely to be of limited use in studying STAT3 Ser727 phosphorylation due to the importance of cell background in determining the nature of the response. However, we have recently found that J774.2 macrophages endogenously express high levels of ObRb, and using these cells we find that leptin stimulates STAT3 phosphorylation on both Tyr705 and Ser727. The phosphorylation of Ser727 was not affected by rapamycin or the protein kinase C inhibitor H7 [1-(5-isoquinolinylsulphonyl)-2-methylpiperazine dihydrochloride]. While the MEK-1 [mitogen-activated protein kinase (MAP kinase)/extracellular-signal-related kinase (ERK) kinase-1] inhibitor PD98059 [(2-amino-3'-methoxyphenyl)oxanaphthalen-4-one] had no effect on leptin-stimulated phosphorylation of STAT3 Tyr705, it greatly attenuated leptin's effects on STAT3 Ser727 phosphorylation. Further, Ob's effect on the DNA binding activity of STAT3 was also greatly reduced at all time points by PD98059. Leptin-induced ERK activation in J774.2 cells shows a biphasic pattern, with an initial reduction in ERK phosphorylation for up to 10 min following leptin stimulation, while at later time points phosphorylation of ERK was increased above basal levels. The increase in ERK activity corresponded with an increase in both phosphorylation of Ser727 and STAT3 DNA binding activity. These data provide the first evidence that ERK-mediated phosphorylation of Ser727 is required for full stimulation of STAT3 by leptin.
Full Text
The Full Text of this article is available as a PDF (179.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe K., Hirai M., Mizuno K., Higashi N., Sekimoto T., Miki T., Hirano T., Nakajima K. The YXXQ motif in gp 130 is crucial for STAT3 phosphorylation at Ser727 through an H7-sensitive kinase pathway. Oncogene. 2001 Jun 14;20(27):3464–3474. doi: 10.1038/sj.onc.1204461. [DOI] [PubMed] [Google Scholar]
- Banks A. S., Davis S. M., Bates S. H., Myers M. G., Jr Activation of downstream signals by the long form of the leptin receptor. J Biol Chem. 2000 May 12;275(19):14563–14572. doi: 10.1074/jbc.275.19.14563. [DOI] [PubMed] [Google Scholar]
- Baumann H., Morella K. K., White D. W., Dembski M., Bailon P. S., Kim H., Lai C. F., Tartaglia L. A. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8374–8378. doi: 10.1073/pnas.93.16.8374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett B. D., Solar G. P., Yuan J. Q., Mathias J., Thomas G. R., Matthews W. A role for leptin and its cognate receptor in hematopoiesis. Curr Biol. 1996 Sep 1;6(9):1170–1180. doi: 10.1016/s0960-9822(02)70684-2. [DOI] [PubMed] [Google Scholar]
- Bjørbaek C., Buchholz R. M., Davis S. M., Bates S. H., Pierroz D. D., Gu H., Neel B. G., Myers M. G., Jr, Flier J. S. Divergent roles of SHP-2 in ERK activation by leptin receptors. J Biol Chem. 2000 Nov 20;276(7):4747–4755. doi: 10.1074/jbc.M007439200. [DOI] [PubMed] [Google Scholar]
- Bjørbaek C., El-Haschimi K., Frantz J. D., Flier J. S. The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem. 1999 Oct 15;274(42):30059–30065. doi: 10.1074/jbc.274.42.30059. [DOI] [PubMed] [Google Scholar]
- Boulton T. G., Zhong Z., Wen Z., Darnell J. E., Jr, Stahl N., Yancopoulos G. D. STAT3 activation by cytokines utilizing gp130 and related transducers involves a secondary modification requiring an H7-sensitive kinase. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6915–6919. doi: 10.1073/pnas.92.15.6915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung J., Kuo C. J., Crabtree G. R., Blenis J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992 Jun 26;69(7):1227–1236. doi: 10.1016/0092-8674(92)90643-q. [DOI] [PubMed] [Google Scholar]
- Chung J., Uchida E., Grammer T. C., Blenis J. STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol. 1997 Nov;17(11):6508–6516. doi: 10.1128/mcb.17.11.6508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eilers A., Georgellis D., Klose B., Schindler C., Ziemiecki A., Harpur A. G., Wilks A. F., Decker T. Differentiation-regulated serine phosphorylation of STAT1 promotes GAF activation in macrophages. Mol Cell Biol. 1995 Jul;15(7):3579–3586. doi: 10.1128/mcb.15.7.3579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gainsford T., Willson T. A., Metcalf D., Handman E., McFarlane C., Ng A., Nicola N. A., Alexander W. S., Hilton D. J. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14564–14568. doi: 10.1073/pnas.93.25.14564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gainsford T., Willson T. A., Metcalf D., Handman E., McFarlane C., Ng A., Nicola N. A., Alexander W. S., Hilton D. J. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14564–14568. doi: 10.1073/pnas.93.25.14564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamann A., Matthaei S. Regulation of energy balance by leptin. Exp Clin Endocrinol Diabetes. 1996;104(4):293–300. doi: 10.1055/s-0029-1211457. [DOI] [PubMed] [Google Scholar]
- Ihle J. N. The Stat family in cytokine signaling. Curr Opin Cell Biol. 2001 Apr;13(2):211–217. doi: 10.1016/s0955-0674(00)00199-x. [DOI] [PubMed] [Google Scholar]
- Kuroki M., O'Flaherty J. T. Extracellular signal-regulated protein kinase (ERK)-dependent and ERK-independent pathways target STAT3 on serine-727 in human neutrophils stimulated by chemotactic factors and cytokines. Biochem J. 1999 Aug 1;341(Pt 3):691–696. [PMC free article] [PubMed] [Google Scholar]
- Lee G. H., Proenca R., Montez J. M., Carroll K. M., Darvishzadeh J. G., Lee J. I., Friedman J. M. Abnormal splicing of the leptin receptor in diabetic mice. Nature. 1996 Feb 15;379(6566):632–635. doi: 10.1038/379632a0. [DOI] [PubMed] [Google Scholar]
- Lord G. M., Matarese G., Howard J. K., Baker R. J., Bloom S. R., Lechler R. I. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998 Aug 27;394(6696):897–901. doi: 10.1038/29795. [DOI] [PubMed] [Google Scholar]
- Martín-Romero C., Santos-Alvarez J., Goberna R., Sánchez-Margalet V. Human leptin enhances activation and proliferation of human circulating T lymphocytes. Cell Immunol. 2000 Jan 10;199(1):15–24. doi: 10.1006/cimm.1999.1594. [DOI] [PubMed] [Google Scholar]
- Mercer J. G., Hoggard N., Williams L. M., Lawrence C. B., Hannah L. T., Trayhurn P. Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett. 1996 Jun 3;387(2-3):113–116. doi: 10.1016/0014-5793(96)00473-5. [DOI] [PubMed] [Google Scholar]
- Ng J., Cantrell D. STAT3 is a serine kinase target in T lymphocytes. Interleukin 2 and T cell antigen receptor signals converge upon serine 727. J Biol Chem. 1997 Sep 26;272(39):24542–24549. doi: 10.1074/jbc.272.39.24542. [DOI] [PubMed] [Google Scholar]
- O'Rourke L., Yeaman S. J., Shepherd P. R. Insulin and leptin acutely regulate cholesterol ester metabolism in macrophages by novel signaling pathways. Diabetes. 2001 May;50(5):955–961. doi: 10.2337/diabetes.50.5.955. [DOI] [PubMed] [Google Scholar]
- Sengupta T. K., Talbot E. S., Scherle P. A., Ivashkiv L. B. Rapid inhibition of interleukin-6 signaling and Stat3 activation mediated by mitogen-activated protein kinases. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11107–11112. doi: 10.1073/pnas.95.19.11107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Servidei T., Aoki Y., Lewis S. E., Symes A., Fink J. S., Reeves S. A. Coordinate regulation of STAT signaling and c-fos expression by the tyrosine phosphatase SHP-2. J Biol Chem. 1998 Mar 13;273(11):6233–6241. doi: 10.1074/jbc.273.11.6233. [DOI] [PubMed] [Google Scholar]
- Tartaglia L. A., Dembski M., Weng X., Deng N., Culpepper J., Devos R., Richards G. J., Campfield L. A., Clark F. T., Deeds J. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995 Dec 29;83(7):1263–1271. doi: 10.1016/0092-8674(95)90151-5. [DOI] [PubMed] [Google Scholar]
- Wen Z., Zhong Z., Darnell J. E., Jr Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995 Jul 28;82(2):241–250. doi: 10.1016/0092-8674(95)90311-9. [DOI] [PubMed] [Google Scholar]
- Yokogami K., Wakisaka S., Avruch J., Reeves S. A. Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol. 2000 Jan 13;10(1):47–50. doi: 10.1016/s0960-9822(99)00268-7. [DOI] [PubMed] [Google Scholar]
- van den Brink G. R., O'Toole T., Hardwick J. C., van den Boogaardt D. E., Versteeg H. H., van Deventer S. J., Peppelenbosch M. P. Leptin signaling in human peripheral blood mononuclear cells, activation of p38 and p42/44 mitogen-activated protein (MAP) kinase and p70 S6 kinase. Mol Cell Biol Res Commun. 2000 Sep;4(3):144–150. doi: 10.1006/mcbr.2001.0270. [DOI] [PubMed] [Google Scholar]