Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jul 1;365(Pt 1):269–277. doi: 10.1042/BJ20020144

Localization and function of a calmodulin-apocalmodulin-binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor.

Ilse Sienaert 1, Nael Nadif Kasri 1, Sara Vanlingen 1, Jan B Parys 1, Geert Callewaert 1, Ludwig Missiaen 1, Humbert de Smedt 1
PMCID: PMC1222651  PMID: 11955285

Abstract

Calmodulin (CaM) is a ubiquitous protein that plays a critical role in regulating cellular functions by altering the activity of a large number of proteins, including the d-myo-inositol 1,4,5-trisphosphate (IP3) receptor (IP3R). CaM inhibits IP3 binding in both the presence and absence of Ca2+ and IP3-induced Ca2+ release in the presence of Ca2+. We have now mapped and characterized a Ca2+-independent CaM-binding site in the N-terminal part of the type 1 IP3R (IP3R1). This site could be responsible for the inhibitory effects of CaM on IP3 binding. We therefore expressed the N-terminal 581 amino acids of IP3R1 as a His-tagged recombinant protein, containing the functional IP3-binding pocket. We showed that CaM, both in the presence and absence of Ca2+, inhibited IP3 binding to this recombinant protein with an IC50 of approx. 2 microM. Deletion of the N-terminal 225 amino acids completely abolished the effects of both Ca2+ and CaM on IP3 binding. We mapped the Ca2+-independent CaM-binding site to a recombinant glutathione S-transferase fusion protein containing the first 159 amino acids of IP3R1 and then made different synthetic peptides overlapping this region. We demonstrated that two synthetic peptides matching amino acids 49-81 and 106-128 bound CaM independently of Ca2+ and could reverse the inhibition of IP3 binding caused by CaM. This suggests that these sequences are components of a discontinuous Ca2+-independent CaM-binding domain, which is probably involved in the inhibition of IP3 binding by CaM.

Full Text

The Full Text of this article is available as a PDF (268.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adkins C. E., Morris S. A., De Smedt H., Sienaert I., Török K., Taylor C. W. Ca2+-calmodulin inhibits Ca2+ release mediated by type-1, -2 and -3 inositol trisphosphate receptors. Biochem J. 2000 Jan 15;345(Pt 2):357–363. [PMC free article] [PubMed] [Google Scholar]
  2. Balshaw D. M., Xu L., Yamaguchi N., Pasek D. A., Meissner G. Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J Biol Chem. 2001 Mar 27;276(23):20144–20153. doi: 10.1074/jbc.M010771200. [DOI] [PubMed] [Google Scholar]
  3. Boehning D., Joseph S. K. Direct association of ligand-binding and pore domains in homo- and heterotetrameric inositol 1,4,5-trisphosphate receptors. EMBO J. 2000 Oct 16;19(20):5450–5459. doi: 10.1093/emboj/19.20.5450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cameron A. M., Steiner J. P., Roskams A. J., Ali S. M., Ronnett G. V., Snyder S. H. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell. 1995 Nov 3;83(3):463–472. doi: 10.1016/0092-8674(95)90124-8. [DOI] [PubMed] [Google Scholar]
  5. Cardy T. J., Taylor C. W. A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors. Biochem J. 1998 Sep 1;334(Pt 2):447–455. doi: 10.1042/bj3340447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  7. Ferris C. D., Huganir R. L., Bredt D. S., Cameron A. M., Snyder S. H. Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2232–2235. doi: 10.1073/pnas.88.6.2232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Furuichi T., Yoshikawa S., Mikoshiba K. Nucleotide sequence of cDNA encoding P400 protein in the mouse cerebellum. Nucleic Acids Res. 1989 Jul 11;17(13):5385–5386. doi: 10.1093/nar/17.13.5385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haeseleer F., Sokal I., Verlinde C. L., Erdjument-Bromage H., Tempst P., Pronin A. N., Benovic J. L., Fariss R. N., Palczewski K. Five members of a novel Ca(2+)-binding protein (CABP) subfamily with similarity to calmodulin. J Biol Chem. 2000 Jan 14;275(2):1247–1260. doi: 10.1074/jbc.275.2.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirota J., Michikawa T., Natsume T., Furuichi T., Mikoshiba K. Calmodulin inhibits inositol 1,4,5-trisphosphate-induced calcium release through the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Lett. 1999 Aug 6;456(2):322–326. doi: 10.1016/s0014-5793(99)00973-4. [DOI] [PubMed] [Google Scholar]
  11. Islam M. O., Yoshida Y., Koga T., Kojima M., Kangawa K., Imai S. Isolation and characterization of vascular smooth muscle inositol 1,4,5-trisphosphate receptor. Biochem J. 1996 May 15;316(Pt 1):295–302. doi: 10.1042/bj3160295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jan C. R., Yu C. C., Huang J. K. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride) (W-7) causes increases in intracellular free Ca2+ levels in bladder female transitional carcinoma (BFTC) cells. Anticancer Res. 2000 Nov-Dec;20(6B):4355–4359. [PubMed] [Google Scholar]
  13. Jurado L. A., Chockalingam P. S., Jarrett H. W. Apocalmodulin. Physiol Rev. 1999 Jul;79(3):661–682. doi: 10.1152/physrev.1999.79.3.661. [DOI] [PubMed] [Google Scholar]
  14. Kakiuchi S., Yasuda S., Yamazaki R., Teshima Y., Kanda K., Kakiuchi R., Sobue K. Quantitative determinations of calmodulin in the supernatant and particulate fractions of mammalian tissues. J Biochem. 1982 Oct;92(4):1041–1048. doi: 10.1093/oxfordjournals.jbchem.a134019. [DOI] [PubMed] [Google Scholar]
  15. Keen J. E., Khawaled R., Farrens D. L., Neelands T., Rivard A., Bond C. T., Janowsky A., Fakler B., Adelman J. P., Maylie J. Domains responsible for constitutive and Ca(2+)-dependent interactions between calmodulin and small conductance Ca(2+)-activated potassium channels. J Neurosci. 1999 Oct 15;19(20):8830–8838. doi: 10.1523/JNEUROSCI.19-20-08830.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kincaid R. L., Vaughan M., Osborne J. C., Jr, Tkachuk V. A. Ca2+-dependent interaction of 5-dimethylaminonaphthalene-1-sulfonyl-calmodulin with cyclic nucleotide phosphodiesterase, calcineurin, and troponin I. J Biol Chem. 1982 Sep 25;257(18):10638–10643. [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lin C., Widjaja J., Joseph S. K. The interaction of calmodulin with alternatively spliced isoforms of the type-I inositol trisphosphate receptor. J Biol Chem. 2000 Jan 28;275(4):2305–2311. doi: 10.1074/jbc.275.4.2305. [DOI] [PubMed] [Google Scholar]
  20. Luby-Phelps K., Hori M., Phelps J. M., Won D. Ca(2+)-regulated dynamic compartmentalization of calmodulin in living smooth muscle cells. J Biol Chem. 1995 Sep 15;270(37):21532–21538. doi: 10.1074/jbc.270.37.21532. [DOI] [PubMed] [Google Scholar]
  21. Mak D. O., McBride S., Foskett J. K. Inositol 1,4,5-trisphosphate [correction of tris-phosphate] activation of inositol trisphosphate [correction of tris-phosphate] receptor Ca2+ channel by ligand tuning of Ca2+ inhibition. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15821–15825. doi: 10.1073/pnas.95.26.15821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Michikawa T., Hirota J., Kawano S., Hiraoka M., Yamada M., Furuichi T., Mikoshiba K. Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor. Neuron. 1999 Aug;23(4):799–808. doi: 10.1016/s0896-6273(01)80037-4. [DOI] [PubMed] [Google Scholar]
  23. Missiaen L., De Smedt H., Parys J. B., Sienaert I., Valingen S., Casteels R. Threshold for inositol 1,4,5-trisphosphate action. J Biol Chem. 1996 May 24;271(21):12287–12293. doi: 10.1074/jbc.271.21.12287. [DOI] [PubMed] [Google Scholar]
  24. Missiaen L., DeSmedt H., Bultynck G., Vanlingen S., Desmet P., Callewaert G., Parys J. B. Calmodulin increases the sensitivity of type 3 inositol-1,4, 5-trisphosphate receptors to Ca(2+) inhibition in human bronchial mucosal cells. Mol Pharmacol. 2000 Mar;57(3):564–567. doi: 10.1124/mol.57.3.564. [DOI] [PubMed] [Google Scholar]
  25. Missiaen L., Parys J. B., Weidema A. F., Sipma H., Vanlingen S., De Smet P., Callewaert G., De Smedt H. The bell-shaped Ca2+ dependence of the inositol 1,4, 5-trisphosphate-induced Ca2+ release is modulated by Ca2+/calmodulin. J Biol Chem. 1999 May 14;274(20):13748–13751. doi: 10.1074/jbc.274.20.13748. [DOI] [PubMed] [Google Scholar]
  26. Patel S., Morris S. A., Adkins C. E., O'Beirne G., Taylor C. W. Ca2+-independent inhibition of inositol trisphosphate receptors by calmodulin: redistribution of calmodulin as a possible means of regulating Ca2+ mobilization. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11627–11632. doi: 10.1073/pnas.94.21.11627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pitt G. S., Zühlke R. D., Hudmon A., Schulman H., Reuter H., Tsien R. W. Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J Biol Chem. 2001 Jun 14;276(33):30794–30802. doi: 10.1074/jbc.M104959200. [DOI] [PubMed] [Google Scholar]
  28. Rhoads A. R., Friedberg F. Sequence motifs for calmodulin recognition. FASEB J. 1997 Apr;11(5):331–340. doi: 10.1096/fasebj.11.5.9141499. [DOI] [PubMed] [Google Scholar]
  29. Rodney G. G., Krol J., Williams B., Beckingham K., Hamilton S. L. The carboxy-terminal calcium binding sites of calmodulin control calmodulin's switch from an activator to an inhibitor of RYR1. Biochemistry. 2001 Oct 16;40(41):12430–12435. doi: 10.1021/bi011078a. [DOI] [PubMed] [Google Scholar]
  30. Rodney G. G., Moore C. P., Williams B. Y., Zhang J. Z., Krol J., Pedersen S. E., Hamilton S. L. Calcium binding to calmodulin leads to an N-terminal shift in its binding site on the ryanodine Receptor. J Biol Chem. 2000 Oct 16;276(3):2069–2074. doi: 10.1074/jbc.M008891200. [DOI] [PubMed] [Google Scholar]
  31. Samsó Montserrat, Wagenknecht Terence. Apocalmodulin and Ca2+-calmodulin bind to neighboring locations on the ryanodine receptor. J Biol Chem. 2001 Nov 2;277(2):1349–1353. doi: 10.1074/jbc.M109196200. [DOI] [PubMed] [Google Scholar]
  32. Schlatterer C., Schaloske R. Calmidazolium leads to an increase in the cytosolic Ca2+ concentration in Dictyostelium discoideum by induction of Ca2+ release from intracellular stores and influx of extracellular Ca2+. Biochem J. 1996 Jan 15;313(Pt 2):661–667. doi: 10.1042/bj3130661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sencer S., Papineni R. V., Halling D. B., Pate P., Krol J., Zhang J. Z., Hamilton S. L. Coupling of RYR1 and L-type calcium channels via calmodulin binding domains. J Biol Chem. 2001 Aug 10;276(41):38237–38241. doi: 10.1074/jbc.C100416200. [DOI] [PubMed] [Google Scholar]
  34. Sienaert I., De Smedt H., Parys J. B., Missiaen L., Vanlingen S., Sipma H., Casteels R. Characterization of a cytosolic and a luminal Ca2+ binding site in the type I inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1996 Oct 25;271(43):27005–27012. doi: 10.1074/jbc.271.43.27005. [DOI] [PubMed] [Google Scholar]
  35. Sienaert I., Missiaen L., De Smedt H., Parys J. B., Sipma H., Casteels R. Molecular and functional evidence for multiple Ca2+-binding domains in the type 1 inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1997 Oct 10;272(41):25899–25906. doi: 10.1074/jbc.272.41.25899. [DOI] [PubMed] [Google Scholar]
  36. Sipma H., De Smet P., Sienaert I., Vanlingen S., Missiaen L., Parys J. B., De Smedt H. Modulation of inositol 1,4,5-trisphosphate binding to the recombinant ligand-binding site of the type-1 inositol 1,4, 5-trisphosphate receptor by Ca2+ and calmodulin. J Biol Chem. 1999 Apr 23;274(17):12157–12162. doi: 10.1074/jbc.274.17.12157. [DOI] [PubMed] [Google Scholar]
  37. Sokal I., Li N., Verlinde C. L., Haeseleer F., Baehr W., Palczewski K. Ca(2+)-binding proteins in the retina: from discovery to etiology of human disease(1). Biochim Biophys Acta. 2000 Dec 20;1498(2-3):233–251. doi: 10.1016/s0167-4889(00)00099-9. [DOI] [PubMed] [Google Scholar]
  38. Vanlingen S., Parys J. B., Missiaen L., De Smedt H., Wuytack F., Casteels R. Distribution of inositol 1,4,5-trisphosphate receptor isoforms, SERCA isoforms and Ca2+ binding proteins in RBL-2H3 rat basophilic leukemia cells. Cell Calcium. 1997 Dec;22(6):475–486. doi: 10.1016/s0143-4160(97)90075-0. [DOI] [PubMed] [Google Scholar]
  39. Vanlingen S., Sipma H., De Smet P., Callewaert G., Missiaen L., De Smedt H., Parys J. B. Ca2+ and calmodulin differentially modulate myo-inositol 1,4, 5-trisphosphate (IP3)-binding to the recombinant ligand-binding domains of the various IP3 receptor isoforms. Biochem J. 2000 Mar 1;346(Pt 2):275–280. [PMC free article] [PubMed] [Google Scholar]
  40. Wawrzynczak E. J., Perham R. N. Isolation and nucleotide sequence of a cDNA encoding human calmodulin. Biochem Int. 1984 Aug;9(2):177–185. [PubMed] [Google Scholar]
  41. Wolf B. A., Colca J. R., McDaniel M. L. Calmodulin inhibits inositol trisphosphate-induced Ca2+ mobilization from the endoplasmic reticulum of islets. Biochem Biophys Res Commun. 1986 Dec 15;141(2):418–425. doi: 10.1016/s0006-291x(86)80189-9. [DOI] [PubMed] [Google Scholar]
  42. Xia X. M., Fakler B., Rivard A., Wayman G., Johnson-Pais T., Keen J. E., Ishii T., Hirschberg B., Bond C. T., Lutsenko S. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature. 1998 Oct 1;395(6701):503–507. doi: 10.1038/26758. [DOI] [PubMed] [Google Scholar]
  43. Yamada M., Miyawaki A., Saito K., Nakajima T., Yamamoto-Hino M., Ryo Y., Furuichi T., Mikoshiba K. The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem J. 1995 May 15;308(Pt 1):83–88. doi: 10.1042/bj3080083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yamaguchi N., Xin C., Meissner G. Identification of apocalmodulin and Ca2+-calmodulin regulatory domain in skeletal muscle Ca2+ release channel, ryanodine receptor. J Biol Chem. 2001 Apr 16;276(25):22579–22585. doi: 10.1074/jbc.M102729200. [DOI] [PubMed] [Google Scholar]
  45. Yoshikawa F., Morita M., Monkawa T., Michikawa T., Furuichi T., Mikoshiba K. Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1996 Jul 26;271(30):18277–18284. doi: 10.1074/jbc.271.30.18277. [DOI] [PubMed] [Google Scholar]
  46. Zhang X., Joseph S. K. Effect of mutation of a calmodulin binding site on Ca2+ regulation of inositol trisphosphate receptors. Biochem J. 2001 Dec 1;360(Pt 2):395–400. doi: 10.1042/0264-6021:3600395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zhu D. M., Tekle E., Chock P. B., Huang C. Y. Reversible phosphorylation as a controlling factor for sustaining calcium oscillations in HeLa cells: Involvement of calmodulin-dependent kinase II and a calyculin A-inhibitable phosphatase. Biochemistry. 1996 Jun 4;35(22):7214–7223. doi: 10.1021/bi952471h. [DOI] [PubMed] [Google Scholar]
  48. Zühlke R. D., Pitt G. S., Deisseroth K., Tsien R. W., Reuter H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature. 1999 May 13;399(6732):159–162. doi: 10.1038/20200. [DOI] [PubMed] [Google Scholar]
  49. Zühlke R. D., Pitt G. S., Tsien R. W., Reuter H. Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C subunit. J Biol Chem. 2000 Jul 14;275(28):21121–21129. doi: 10.1074/jbc.M002986200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES