Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jul 15;365(Pt 2):429–440. doi: 10.1042/BJ20020251

Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences.

Douglas Ramsay 1, Elaine Kellett 1, Mary McVey 1, Stephen Rees 1, Graeme Milligan 1
PMCID: PMC1222697  PMID: 11971762

Abstract

Homo- and hetero-oligomerization of G-protein-coupled receptors (GPCRs) were examined in HEK-293 cells using two variants of bioluminescence resonance energy transfer (BRET). BRET(2) (a variant of BRET) offers greatly improved separation of the emission spectra of the donor and acceptor moieties compared with traditional BRET. Previously recorded homo-oligomerization of the human delta-opioid receptor was confirmed using BRET(2). Homo-oligomerization of the kappa-opioid receptor was observed using both BRET techniques. Both homo- and hetero-oligomers, containing both delta- and kappa-opioid receptors, were unaffected by the presence of receptor ligands. BRET detection of opioid receptor homo- and hetero-oligomers required expression of 50,000-100,000 copies of the receptor energy acceptor construct per cell. The effectiveness of delta-kappa-opioid receptor hetero-oligomer formation was as great as for homomeric interactions. The capacity of the two opioid receptors to form oligomeric complexes with the beta(2)-adrenoceptor was also assessed. Although such interactions were detected, at least 250,000 copies per cell of the energy acceptor were required. Requirement for high levels of receptor expression was equally pronounced in attempts to measure hetero-oligomer formation between the kappa-opioid receptor and the thyrotropin-releasing hormone receptor-1. These studies indicate that constitutively formed homo- and hetero-oligomers of opioid receptor subtypes can be detected in living cells containing less than 100,000 copies of the receptors. However, although hetero-oligomeric interactions between certain less closely related GPCRs can be detected, they appear to be of lower affinity than homo- or hetero-oligomers containing closely related sequences. Interactions recorded between certain GPCR family members in heterologous expression systems are likely to be artefacts of extreme levels of overexpression.

Full Text

The Full Text of this article is available as a PDF (227.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AbdAlla S., Lother H., Quitterer U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature. 2000 Sep 7;407(6800):94–98. doi: 10.1038/35024095. [DOI] [PubMed] [Google Scholar]
  2. Angers S., Salahpour A., Joly E., Hilairet S., Chelsky D., Dennis M., Bouvier M. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3684–3689. doi: 10.1073/pnas.060590697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong D., Strange P. G. Dopamine D2 receptor dimer formation: evidence from ligand binding. J Biol Chem. 2001 Feb 23;276(25):22621–22629. doi: 10.1074/jbc.M006936200. [DOI] [PubMed] [Google Scholar]
  4. Ballesteros J. A., Shi L., Javitch J. A. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol Pharmacol. 2001 Jul;60(1):1–19. [PubMed] [Google Scholar]
  5. Bockaert J., Pin J. P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 1999 Apr 1;18(7):1723–1729. doi: 10.1093/emboj/18.7.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bouvier M. Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci. 2001 Apr;2(4):274–286. doi: 10.1038/35067575. [DOI] [PubMed] [Google Scholar]
  7. Cheng Z. J., Miller L. J. Agonist-dependent dissociation of oligomeric complexes of G protein-coupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer. J Biol Chem. 2001 Oct 22;276(51):48040–48047. doi: 10.1074/jbc.M105668200. [DOI] [PubMed] [Google Scholar]
  8. Connor M., Christie M. D. Opioid receptor signalling mechanisms. Clin Exp Pharmacol Physiol. 1999 Jul;26(7):493–499. doi: 10.1046/j.1440-1681.1999.03049.x. [DOI] [PubMed] [Google Scholar]
  9. Cornea A., Janovick J. A., Maya-Núez G., Conn P. M. Gonadotropin-releasing hormone receptor microaggregation. Rate monitored by fluorescence resonance energy transfer. J Biol Chem. 2000 Oct 16;276(3):2153–2158. doi: 10.1074/jbc.M007850200. [DOI] [PubMed] [Google Scholar]
  10. Cvejic S., Devi L. A. Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem. 1997 Oct 24;272(43):26959–26964. doi: 10.1074/jbc.272.43.26959. [DOI] [PubMed] [Google Scholar]
  11. Devi L. A. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol Sci. 2001 Oct;22(10):532–537. doi: 10.1016/s0165-6147(00)01799-5. [DOI] [PubMed] [Google Scholar]
  12. Drmota T., Gould G. W., Milligan G. Real time visualization of agonist-mediated redistribution and internalization of a green fluorescent protein-tagged form of the thyrotropin-releasing hormone receptor. J Biol Chem. 1998 Sep 11;273(37):24000–24008. doi: 10.1074/jbc.273.37.24000. [DOI] [PubMed] [Google Scholar]
  13. Gama L., Wilt S. G., Breitwieser G. E. Heterodimerization of calcium sensing receptors with metabotropic glutamate receptors in neurons. J Biol Chem. 2001 Aug 6;276(42):39053–39059. doi: 10.1074/jbc.M105662200. [DOI] [PubMed] [Google Scholar]
  14. George S. R., Fan T., Xie Z., Tse R., Tam V., Varghese G., O'Dowd B. F. Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem. 2000 Aug 25;275(34):26128–26135. doi: 10.1074/jbc.M000345200. [DOI] [PubMed] [Google Scholar]
  15. Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev. 2000 Feb;21(1):90–113. doi: 10.1210/edrv.21.1.0390. [DOI] [PubMed] [Google Scholar]
  16. Ginés S., Hillion J., Torvinen M., Le Crom S., Casadó V., Canela E. I., Rondin S., Lew J. Y., Watson S., Zoli M. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8606–8611. doi: 10.1073/pnas.150241097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gouldson P. R., Higgs C., Smith R. E., Dean M. K., Gkoutos G. V., Reynolds C. A. Dimerization and domain swapping in G-protein-coupled receptors: a computational study. Neuropsychopharmacology. 2000 Oct;23(4 Suppl):S60–S77. doi: 10.1016/S0893-133X(00)00153-6. [DOI] [PubMed] [Google Scholar]
  18. Grosse R., Schöneberg T., Schultz G., Gudermann T. Inhibition of gonadotropin-releasing hormone receptor signaling by expression of a splice variant of the human receptor. Mol Endocrinol. 1997 Aug;11(9):1305–1318. doi: 10.1210/mend.11.9.9966. [DOI] [PubMed] [Google Scholar]
  19. Hebert T. E., Moffett S., Morello J. P., Loisel T. P., Bichet D. G., Barret C., Bouvier M. A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem. 1996 Jul 5;271(27):16384–16392. doi: 10.1074/jbc.271.27.16384. [DOI] [PubMed] [Google Scholar]
  20. Jahangeer S., Rodbell M. The disaggregation theory of signal transduction revisited: further evidence that G proteins are multimeric and disaggregate to monomers when activated. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8782–8786. doi: 10.1073/pnas.90.19.8782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jordan B. A., Devi L. A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature. 1999 Jun 17;399(6737):697–700. doi: 10.1038/21441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jordan B. A., Trapaidze N., Gomes I., Nivarthi R., Devi L. A. Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):343–348. doi: 10.1073/pnas.011384898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Karpa K. D., Lin R., Kabbani N., Levenson R. The dopamine D3 receptor interacts with itself and the truncated D3 splice variant d3nf: D3-D3nf interaction causes mislocalization of D3 receptors. Mol Pharmacol. 2000 Oct;58(4):677–683. doi: 10.1124/mol.58.4.677. [DOI] [PubMed] [Google Scholar]
  24. Kroeger K. M., Hanyaloglu A. C., Seeber R. M., Miles L. E., Eidne K. A. Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J Biol Chem. 2001 Jan 18;276(16):12736–12743. doi: 10.1074/jbc.M011311200. [DOI] [PubMed] [Google Scholar]
  25. Lee S. P., O'Dowd B. F., Ng G. Y., Varghese G., Akil H., Mansour A., Nguyen T., George S. R. Inhibition of cell surface expression by mutant receptors demonstrates that D2 dopamine receptors exist as oligomers in the cell. Mol Pharmacol. 2000 Jul;58(1):120–128. doi: 10.1124/mol.58.1.120. [DOI] [PubMed] [Google Scholar]
  26. Margeta-Mitrovic M., Jan Y. N., Jan L. Y. A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron. 2000 Jul;27(1):97–106. doi: 10.1016/s0896-6273(00)00012-x. [DOI] [PubMed] [Google Scholar]
  27. Marshall F. H., Jones K. A., Kaupmann K., Bettler B. GABAB receptors - the first 7TM heterodimers. Trends Pharmacol Sci. 1999 Oct;20(10):396–399. doi: 10.1016/s0165-6147(99)01383-8. [DOI] [PubMed] [Google Scholar]
  28. McLean A. J., Bevan N., Rees S., Milligan G. Visualizing differences in ligand regulation of wild-type and constitutively active mutant beta(2)-adrenoceptor-green fluorescent protein fusion proteins. Mol Pharmacol. 1999 Dec;56(6):1182–1191. doi: 10.1124/mol.56.6.1182. [DOI] [PubMed] [Google Scholar]
  29. McLean A. J., Milligan G. Ligand regulation of green fluorescent protein-tagged forms of the human beta(1)- and beta(2)-adrenoceptors; comparisons with the unmodified receptors. Br J Pharmacol. 2000 Aug;130(8):1825–1832. doi: 10.1038/sj.bjp.0703506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McVey M., Ramsay D., Kellett E., Rees S., Wilson S., Pope A. J., Milligan G. Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta -opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem. 2001 Jan 22;276(17):14092–14099. doi: 10.1074/jbc.M008902200. [DOI] [PubMed] [Google Scholar]
  31. Mellado M., Rodríguez-Frade J. M., Vila-Coro A. J., Fernández S., Martín de Ana A., Jones D. R., Torán J. L., Martínez-A C. Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J. 2001 May 15;20(10):2497–2507. doi: 10.1093/emboj/20.10.2497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Milligan G. Oligomerisation of G-protein-coupled receptors. J Cell Sci. 2001 Apr;114(Pt 7):1265–1271. doi: 10.1242/jcs.114.7.1265. [DOI] [PubMed] [Google Scholar]
  33. Nimchinsky E. A., Hof P. R., Janssen W. G., Morrison J. H., Schmauss C. Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J Biol Chem. 1997 Nov 14;272(46):29229–29237. doi: 10.1074/jbc.272.46.29229. [DOI] [PubMed] [Google Scholar]
  34. Overton M. C., Blumer K. J. G-protein-coupled receptors function as oligomers in vivo. Curr Biol. 2000 Mar 23;10(6):341–344. doi: 10.1016/s0960-9822(00)00386-9. [DOI] [PubMed] [Google Scholar]
  35. Pfeiffer M., Koch T., Schröder H., Klutzny M., Kirscht S., Kreienkamp H. J., Höllt V., Schulz S. Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). J Biol Chem. 2000 Dec 27;276(17):14027–14036. doi: 10.1074/jbc.M006084200. [DOI] [PubMed] [Google Scholar]
  36. Ramsay D., Bevan N., Rees S., Milligan G. Detection of receptor ligands by monitoring selective stabilization of a Renilla luciferase-tagged, constitutively active mutant, G-protein-coupled receptor. Br J Pharmacol. 2001 May;133(2):315–323. doi: 10.1038/sj.bjp.0704077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rocheville M., Lange D. C., Kumar U., Patel S. C., Patel R. C., Patel Y. C. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science. 2000 Apr 7;288(5463):154–157. doi: 10.1126/science.288.5463.154. [DOI] [PubMed] [Google Scholar]
  38. Rocheville M., Lange D. C., Kumar U., Sasi R., Patel R. C., Patel Y. C. Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem. 2000 Mar 17;275(11):7862–7869. doi: 10.1074/jbc.275.11.7862. [DOI] [PubMed] [Google Scholar]
  39. Rodríguez-Frade J. M., Vila-Coro A. J., de Ana A. M., Albar J. P., Martínez-A C., Mellado M. The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3628–3633. doi: 10.1073/pnas.96.7.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Salim Kamran, Fenton Tim, Bacha Jamil, Urien-Rodriguez Hector, Bonnert Tim, Skynner Heather A., Watts Emma, Kerby Julie, Heald Anne, Beer Margaret. Oligomerization of G-protein-coupled receptors shown by selective co-immunoprecipitation. J Biol Chem. 2002 Feb 19;277(18):15482–15485. doi: 10.1074/jbc.M201539200. [DOI] [PubMed] [Google Scholar]
  41. Schulz A., Grosse R., Schultz G., Gudermann T., Schöneberg T. Structural implication for receptor oligomerization from functional reconstitution studies of mutant V2 vasopressin receptors. J Biol Chem. 2000 Jan 28;275(4):2381–2389. doi: 10.1074/jbc.275.4.2381. [DOI] [PubMed] [Google Scholar]
  42. Tsuji Y., Shimada Y., Takeshita T., Kajimura N., Nomura S., Sekiyama N., Otomo J., Usukura J., Nakanishi S., Jingami H. Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J Biol Chem. 2000 Sep 8;275(36):28144–28151. doi: 10.1074/jbc.M003226200. [DOI] [PubMed] [Google Scholar]
  43. Wilson S., Bergsma D. J., Chambers J. K., Muir A. I., Fantom K. G., Ellis C., Murdock P. R., Herrity N. C., Stadel J. M. Orphan G-protein-coupled receptors: the next generation of drug targets? Br J Pharmacol. 1998 Dec;125(7):1387–1392. doi: 10.1038/sj.bjp.0702238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yoshioka K., Saitoh O., Nakata H. Heteromeric association creates a P2Y-like adenosine receptor. Proc Natl Acad Sci U S A. 2001 Jun 5;98(13):7617–7622. doi: 10.1073/pnas.121587098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zeng F. Y., Wess J. Identification and molecular characterization of m3 muscarinic receptor dimers. J Biol Chem. 1999 Jul 2;274(27):19487–19497. doi: 10.1074/jbc.274.27.19487. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES