Abstract
Stearoylethanolamide (SEA) is present in human, rat and mouse brain in amounts comparable with those of the endocannabinoid anandamide (arachidonoylethanolamide; AEA). Yet, the biological activity of SEA has never been investigated. We synthesized unlabelled and radiolabelled SEA to investigate its binding, degradation and biological activity in rat C6 glioma cells. We report that SEA binds to a specific site distinct from known cannabinoid or vanilloid receptors, and that AEA and capsazepine partly (approx. 50%) antagonized this binding. Treatment of C6 cells with SEA inhibits cellular nitric oxide synthase and does not affect adenylate cyclase, whereas treatment with cannabinoid type 1 agonist 2-arachidonoylglycerol activates the former enzyme and inhibits the latter. C6 cells also have a specific SEA membrane transporter, which is inhibited by NO, and a fatty acid amide hydrolase capable of cleaving SEA. In these cells, SEA shows pro-apoptotic activity, due to elevation of intracellular calcium, activation of the arachidonate cascade and mitochondrial uncoupling. NO further enhances SEA-induced apoptosis. Moreover, the cannabinoid type 1 receptor-mediated decrease in cAMP induced by AEA in C6 cells is potentiated by SEA, suggesting that this compound also has an 'entourage' effect. Taken together, this study shows that SEA is an endocannabinoid-like compound which binds to and is transported by new components of the endocannabinoid system. It seems noteworthy that degradation and pro-apoptotic activity of SEA are regulated by NO in a way opposite to that reported for AEA.
Full Text
The Full Text of this article is available as a PDF (272.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bayewitch M., Avidor-Reiss T., Levy R., Barg J., Mechoulam R., Vogel Z. The peripheral cannabinoid receptor: adenylate cyclase inhibition and G protein coupling. FEBS Lett. 1995 Nov 13;375(1-2):143–147. doi: 10.1016/0014-5793(95)01207-u. [DOI] [PubMed] [Google Scholar]
- Ben-Shabat S., Fride E., Sheskin T., Tamiri T., Rhee M. H., Vogel Z., Bisogno T., De Petrocellis L., Di Marzo V., Mechoulam R. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol. 1998 Jul 17;353(1):23–31. doi: 10.1016/s0014-2999(98)00392-6. [DOI] [PubMed] [Google Scholar]
- Berdyshev E. V., Schmid P. C., Dong Z., Schmid H. H. Stress-induced generation of N-acylethanolamines in mouse epidermal JB6 P+ cells. Biochem J. 2000 Mar 1;346(Pt 2):369–374. [PMC free article] [PubMed] [Google Scholar]
- Bouaboula M., Bianchini L., McKenzie F. R., Pouyssegur J., Casellas P. Cannabinoid receptor CB1 activates the Na+/H+ exchanger NHE-1 isoform via Gi-mediated mitogen activated protein kinase signaling transduction pathways. FEBS Lett. 1999 Apr 16;449(1):61–65. doi: 10.1016/s0014-5793(99)00395-6. [DOI] [PubMed] [Google Scholar]
- Breivogel C. S., Griffin G., Di Marzo V., Martin B. R. Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol Pharmacol. 2001 Jul;60(1):155–163. [PubMed] [Google Scholar]
- Cadas H., di Tomaso E., Piomelli D. Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain. J Neurosci. 1997 Feb 15;17(4):1226–1242. doi: 10.1523/JNEUROSCI.17-04-01226.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan G. C., Hinds T. R., Impey S., Storm D. R. Hippocampal neurotoxicity of Delta9-tetrahydrocannabinol. J Neurosci. 1998 Jul 15;18(14):5322–5332. doi: 10.1523/JNEUROSCI.18-14-05322.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Petrocellis L., Bisogno T., Davis J. B., Pertwee R. G., Di Marzo V. Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Lett. 2000 Oct 13;483(1):52–56. doi: 10.1016/s0014-5793(00)02082-2. [DOI] [PubMed] [Google Scholar]
- De Petrocellis L., Bisogno T., Maccarrone M., Davis J. B., Finazzi-Agro A., Di Marzo V. The activity of anandamide at vanilloid VR1 receptors requires facilitated transport across the cell membrane and is limited by intracellular metabolism. J Biol Chem. 2001 Jan 26;276(16):12856–12863. doi: 10.1074/jbc.M008555200. [DOI] [PubMed] [Google Scholar]
- Deutsch D. G., Chin S. A. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol. 1993 Sep 1;46(5):791–796. doi: 10.1016/0006-2952(93)90486-g. [DOI] [PubMed] [Google Scholar]
- Devane W. A., Hanus L., Breuer A., Pertwee R. G., Stevenson L. A., Griffin G., Gibson D., Mandelbaum A., Etinger A., Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992 Dec 18;258(5090):1946–1949. doi: 10.1126/science.1470919. [DOI] [PubMed] [Google Scholar]
- Di Marzo V., Bisogno T., Sugiura T., Melck D., De Petrocellis L. The novel endogenous cannabinoid 2-arachidonoylglycerol is inactivated by neuronal- and basophil-like cells: connections with anandamide. Biochem J. 1998 Apr 1;331(Pt 1):15–19. doi: 10.1042/bj3310015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di Marzo V., Melck D., Orlando P., Bisogno T., Zagoory O., Bifulco M., Vogel Z., De Petrocellis L. Palmitoylethanolamide inhibits the expression of fatty acid amide hydrolase and enhances the anti-proliferative effect of anandamide in human breast cancer cells. Biochem J. 2001 Aug 15;358(Pt 1):249–255. doi: 10.1042/0264-6021:3580249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di Marzo Vincenzo, Griffin Graeme, De Petrocellis Luciano, Brandi Ines, Bisogno Tiziana, Williams William, Grier Mark C., Kulasegram Sanjitha, Mahadevan Anu, Razdan Raj K. A structure/activity relationship study on arvanil, an endocannabinoid and vanilloid hybrid. J Pharmacol Exp Ther. 2002 Mar;300(3):984–991. doi: 10.1124/jpet.300.3.984. [DOI] [PubMed] [Google Scholar]
- Esposito G., Izzo A. A., Di Rosa M., Iuvone T. Selective cannabinoid CB1 receptor-mediated inhibition of inducible nitric oxide synthase protein expression in C6 rat glioma cells. J Neurochem. 2001 Aug;78(4):835–841. doi: 10.1046/j.1471-4159.2001.00465.x. [DOI] [PubMed] [Google Scholar]
- Funk C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001 Nov 30;294(5548):1871–1875. doi: 10.1126/science.294.5548.1871. [DOI] [PubMed] [Google Scholar]
- Galve-Roperh I., Sánchez C., Cortés M. L., Gómez del Pulgar T., Izquierdo M., Guzmán M. Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med. 2000 Mar;6(3):313–319. doi: 10.1038/73171. [DOI] [PubMed] [Google Scholar]
- Hanus L., Abu-Lafi S., Fride E., Breuer A., Vogel Z., Shalev D. E., Kustanovich I., Mechoulam R. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci U S A. 2001 Mar 20;98(7):3662–3665. doi: 10.1073/pnas.061029898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hillard C. J., Jarrahian A. The movement of N-arachidonoylethanolamine (anandamide) across cellular membranes. Chem Phys Lipids. 2000 Nov;108(1-2):123–134. doi: 10.1016/s0009-3084(00)00191-2. [DOI] [PubMed] [Google Scholar]
- Howlett A. C., Mukhopadhyay S. Cellular signal transduction by anandamide and 2-arachidonoylglycerol. Chem Phys Lipids. 2000 Nov;108(1-2):53–70. doi: 10.1016/s0009-3084(00)00187-0. [DOI] [PubMed] [Google Scholar]
- Kunos G., Járai Z., Bátkai S., Goparaju S. K., Ishac E. J., Liu J., Wang L., Wagner J. A. Endocannabinoids as cardiovascular modulators. Chem Phys Lipids. 2000 Nov;108(1-2):159–168. doi: 10.1016/s0009-3084(00)00194-8. [DOI] [PubMed] [Google Scholar]
- Lambert D. M., Di Marzo V. The palmitoylethanolamide and oleamide enigmas : are these two fatty acid amides cannabimimetic? Curr Med Chem. 1999 Aug;6(8):757–773. [PubMed] [Google Scholar]
- Maccarrone M., Attinà M., Bari M., Cartoni A., Ledent C., Finazzi-Agrò A. Anandamide degradation and N-acylethanolamines level in wild-type and CB1 cannabinoid receptor knockout mice of different ages. J Neurochem. 2001 Jul;78(2):339–348. doi: 10.1046/j.1471-4159.2001.00413.x. [DOI] [PubMed] [Google Scholar]
- Maccarrone M., Bari M., Lorenzon T., Bisogno T., Di Marzo V., Finazzi-Agrò A. Anandamide uptake by human endothelial cells and its regulation by nitric oxide. J Biol Chem. 2000 May 5;275(18):13484–13492. doi: 10.1074/jbc.275.18.13484. [DOI] [PubMed] [Google Scholar]
- Maccarrone M., Lorenzon T., Bari M., Melino G., Finazzi-Agro A. Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors. J Biol Chem. 2000 Oct 13;275(41):31938–31945. doi: 10.1074/jbc.M005722200. [DOI] [PubMed] [Google Scholar]
- Maccarrone M., Melino G., Finazzi-Agrò A. Lipoxygenases and their involvement in programmed cell death. Cell Death Differ. 2001 Aug;8(8):776–784. doi: 10.1038/sj.cdd.4400908. [DOI] [PubMed] [Google Scholar]
- Patricelli M. P., Cravatt B. F. Characterization and manipulation of the acyl chain selectivity of fatty acid amide hydrolase. Biochemistry. 2001 May 22;40(20):6107–6115. doi: 10.1021/bi002578r. [DOI] [PubMed] [Google Scholar]
- Pertwee R. G. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther. 1997;74(2):129–180. doi: 10.1016/s0163-7258(97)82001-3. [DOI] [PubMed] [Google Scholar]
- Piomelli D., Beltramo M., Glasnapp S., Lin S. Y., Goutopoulos A., Xie X. Q., Makriyannis A. Structural determinants for recognition and translocation by the anandamide transporter. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5802–5807. doi: 10.1073/pnas.96.10.5802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reggio P. H., Traore H. Conformational requirements for endocannabinoid interaction with the cannabinoid receptors, the anandamide transporter and fatty acid amidohydrolase. Chem Phys Lipids. 2000 Nov;108(1-2):15–35. doi: 10.1016/s0009-3084(00)00185-7. [DOI] [PubMed] [Google Scholar]
- Rodríguez de Fonseca F., Navarro M., Gómez R., Escuredo L., Nava F., Fu J., Murillo-Rodríguez E., Giuffrida A., LoVerme J., Gaetani S. An anorexic lipid mediator regulated by feeding. Nature. 2001 Nov 8;414(6860):209–212. doi: 10.1038/35102582. [DOI] [PubMed] [Google Scholar]
- Ross R. A., Gibson T. M., Brockie H. C., Leslie M., Pashmi G., Craib S. J., Di Marzo V., Pertwee R. G. Structure-activity relationship for the endogenous cannabinoid, anandamide, and certain of its analogues at vanilloid receptors in transfected cells and vas deferens. Br J Pharmacol. 2001 Feb;132(3):631–640. doi: 10.1038/sj.bjp.0703850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rueda D., Galve-Roperh I., Haro A., Guzmán M. The CB(1) cannabinoid receptor is coupled to the activation of c-Jun N-terminal kinase. Mol Pharmacol. 2000 Oct;58(4):814–820. doi: 10.1124/mol.58.4.814. [DOI] [PubMed] [Google Scholar]
- Salzet M., Breton C., Bisogno T., Di Marzo V. Comparative biology of the endocannabinoid system possible role in the immune response. Eur J Biochem. 2000 Aug;267(16):4917–4927. doi: 10.1046/j.1432-1327.2000.01550.x. [DOI] [PubMed] [Google Scholar]
- Sarker K. P., Obara S., Nakata M., Kitajima I., Maruyama I. Anandamide induces apoptosis of PC-12 cells: involvement of superoxide and caspase-3. FEBS Lett. 2000 Apr 21;472(1):39–44. doi: 10.1016/s0014-5793(00)01425-3. [DOI] [PubMed] [Google Scholar]
- Smiley S. T., Reers M., Mottola-Hartshorn C., Lin M., Chen A., Smith T. W., Steele G. D., Jr, Chen L. B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3671–3675. doi: 10.1073/pnas.88.9.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. B., Compton D. R., Welch S. P., Razdan R. K., Mechoulam R., Martin B. R. The pharmacological activity of anandamide, a putative endogenous cannabinoid, in mice. J Pharmacol Exp Ther. 1994 Jul;270(1):219–227. [PubMed] [Google Scholar]
- Sugiura T., Waku K. 2-Arachidonoylglycerol and the cannabinoid receptors. Chem Phys Lipids. 2000 Nov;108(1-2):89–106. doi: 10.1016/s0009-3084(00)00189-4. [DOI] [PubMed] [Google Scholar]
- Ueda N., Puffenbarger R. A., Yamamoto S., Deutsch D. G. The fatty acid amide hydrolase (FAAH). Chem Phys Lipids. 2000 Nov;108(1-2):107–121. doi: 10.1016/s0009-3084(00)00190-0. [DOI] [PubMed] [Google Scholar]
- Vandenberghe P. A., Ceuppens J. L. Flow cytometric measurement of cytoplasmic free calcium in human peripheral blood T lymphocytes with fluo-3, a new fluorescent calcium indicator. J Immunol Methods. 1990 Mar 9;127(2):197–205. doi: 10.1016/0022-1759(90)90069-8. [DOI] [PubMed] [Google Scholar]
- Zamzami N., Marchetti P., Castedo M., Decaudin D., Macho A., Hirsch T., Susin S. A., Petit P. X., Mignotte B., Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995 Aug 1;182(2):367–377. doi: 10.1084/jem.182.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Leyen K., Duvoisin R. M., Engelhardt H., Wiedmann M. A function for lipoxygenase in programmed organelle degradation. Nature. 1998 Sep 24;395(6700):392–395. doi: 10.1038/26500. [DOI] [PubMed] [Google Scholar]