Abstract
The amyloid plaque, consisting of amyloid beta-peptide (Abeta) fibrils surrounded by dystrophic neurites, is an invariable feature of Alzheimer's disease. The determination of the molecular structure of Abeta fibrils is a significant goal that may lead to the structure-based design of effective therapeutics for Alzheimer's disease. Technical challenges have thus far rendered this goal impossible. In the present study, we develop an alternative methodology. Rather than determining the structure directly, we design conformationally constrained peptides and demonstrate that only certain 'bricks' can aggregate into fibrils morphologically identical to Abeta fibrils. The designed peptides include variants of a decapeptide fragment of Abeta, previously shown to be one of the smallest peptides that (1) includes a pentapeptide sequence necessary for Abeta-Abeta binding and aggregation and (2) can form fibrils indistinguishable from those formed by full-length Abeta. The secondary structure of these bricks is monitored by CD spectroscopy, and electron microscopy is used to study the morphology of the aggregates formed. We then made various residue deletions and substitutions to determine which structural features are essential for fibril formation. From the constraints, statistical analysis of side-chain pair correlations in beta-sheets and experimental data, we deduce a detailed model of the peptide strand alignment in fibrils formed by these bricks. Our results show that the constrained decapeptide dimers rapidly form an intramolecular, antiparallel beta-sheet and polymerize into amyloid fibrils at low concentrations. We suggest that the formation of an exposed beta-sheet (e.g. an Abeta dimer formed by interaction in the decapeptide region) could be a rate-limiting step in fibril formation. A theoretical framework that explains the results is presented in parallel with the data.
Full Text
The Full Text of this article is available as a PDF (328.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antzutkin O. N., Balbach J. J., Leapman R. D., Rizzo N. W., Reed J., Tycko R. Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer's beta-amyloid fibrils. Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13045–13050. doi: 10.1073/pnas.230315097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balbach J. J., Ishii Y., Antzutkin O. N., Leapman R. D., Rizzo N. W., Dyda F., Reed J., Tycko R. Amyloid fibril formation by A beta 16-22, a seven-residue fragment of the Alzheimer's beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry. 2000 Nov 14;39(45):13748–13759. doi: 10.1021/bi0011330. [DOI] [PubMed] [Google Scholar]
- Benzinger T. L., Gregory D. M., Burkoth T. S., Miller-Auer H., Lynn D. G., Botto R. E., Meredith S. C. Propagating structure of Alzheimer's beta-amyloid(10-35) is parallel beta-sheet with residues in exact register. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13407–13412. doi: 10.1073/pnas.95.23.13407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benzinger T. L., Gregory D. M., Burkoth T. S., Miller-Auer H., Lynn D. G., Botto R. E., Meredith S. C. Two-dimensional structure of beta-amyloid(10-35) fibrils. Biochemistry. 2000 Mar 28;39(12):3491–3499. doi: 10.1021/bi991527v. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Greenfield N. J. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal Biochem. 1996 Mar 1;235(1):1–10. doi: 10.1006/abio.1996.0084. [DOI] [PubMed] [Google Scholar]
- Hardy J. The Alzheimer family of diseases: many etiologies, one pathogenesis? Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2095–2097. doi: 10.1073/pnas.94.6.2095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartley D. M., Walsh D. M., Ye C. P., Diehl T., Vasquez S., Vassilev P. M., Teplow D. B., Selkoe D. J. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci. 1999 Oct 15;19(20):8876–8884. doi: 10.1523/JNEUROSCI.19-20-08876.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilbich C., Kisters-Woike B., Reed J., Masters C. L., Beyreuther K. Aggregation and secondary structure of synthetic amyloid beta A4 peptides of Alzheimer's disease. J Mol Biol. 1991 Mar 5;218(1):149–163. doi: 10.1016/0022-2836(91)90881-6. [DOI] [PubMed] [Google Scholar]
- Hutchinson E. G., Thornton J. M. A revised set of potentials for beta-turn formation in proteins. Protein Sci. 1994 Dec;3(12):2207–2216. doi: 10.1002/pro.5560031206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inouye H., Fraser P. E., Kirschner D. A. Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by x-ray diffraction. Biophys J. 1993 Feb;64(2):502–519. doi: 10.1016/S0006-3495(93)81393-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inouye H., Kirschner D. A. Refined fibril structures: the hydrophobic core in Alzheimer's amyloid beta-protein and prion as revealed by X-ray diffraction. Ciba Found Symp. 1996;199:22–39. doi: 10.1002/9780470514924.ch3. [DOI] [PubMed] [Google Scholar]
- Iversen L. L., Mortishire-Smith R. J., Pollack S. J., Shearman M. S. The toxicity in vitro of beta-amyloid protein. Biochem J. 1995 Oct 1;311(Pt 1):1–16. doi: 10.1042/bj3110001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarrett J. T., Berger E. P., Lansbury P. T., Jr The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry. 1993 May 11;32(18):4693–4697. doi: 10.1021/bi00069a001. [DOI] [PubMed] [Google Scholar]
- Lambert M. P., Barlow A. K., Chromy B. A., Edwards C., Freed R., Liosatos M., Morgan T. E., Rozovsky I., Trommer B., Viola K. L. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6448–6453. doi: 10.1073/pnas.95.11.6448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorenzo A., Yankner B. A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12243–12247. doi: 10.1073/pnas.91.25.12243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Näslund J., Schierhorn A., Hellman U., Lannfelt L., Roses A. D., Tjernberg L. O., Silberring J., Gandy S. E., Winblad B., Greengard P. Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8378–8382. doi: 10.1073/pnas.91.18.8378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pike C. J., Walencewicz-Wasserman A. J., Kosmoski J., Cribbs D. H., Glabe C. G., Cotman C. W. Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem. 1995 Jan;64(1):253–265. doi: 10.1046/j.1471-4159.1995.64010253.x. [DOI] [PubMed] [Google Scholar]
- Podlisny M. B., Ostaszewski B. L., Squazzo S. L., Koo E. H., Rydell R. E., Teplow D. B., Selkoe D. J. Aggregation of secreted amyloid beta-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem. 1995 Apr 21;270(16):9564–9570. doi: 10.1074/jbc.270.16.9564. [DOI] [PubMed] [Google Scholar]
- Podlisny M. B., Walsh D. M., Amarante P., Ostaszewski B. L., Stimson E. R., Maggio J. E., Teplow D. B., Selkoe D. J. Oligomerization of endogenous and synthetic amyloid beta-protein at nanomolar levels in cell culture and stabilization of monomer by Congo red. Biochemistry. 1998 Mar 17;37(11):3602–3611. doi: 10.1021/bi972029u. [DOI] [PubMed] [Google Scholar]
- Roher A. E., Chaney M. O., Kuo Y. M., Webster S. D., Stine W. B., Haverkamp L. J., Woods A. S., Cotter R. J., Tuohy J. M., Krafft G. A. Morphology and toxicity of Abeta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer's disease. J Biol Chem. 1996 Aug 23;271(34):20631–20635. doi: 10.1074/jbc.271.34.20631. [DOI] [PubMed] [Google Scholar]
- Selkoe D. J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature. 1999 Jun 24;399(6738 Suppl):A23–A31. doi: 10.1038/399a023. [DOI] [PubMed] [Google Scholar]
- Serpell L. C., Smith J. M. Direct visualisation of the beta-sheet structure of synthetic Alzheimer's amyloid. J Mol Biol. 2000 May 26;299(1):225–231. doi: 10.1006/jmbi.2000.3650. [DOI] [PubMed] [Google Scholar]
- Shao H., Jao S., Ma K., Zagorski M. G. Solution structures of micelle-bound amyloid beta-(1-40) and beta-(1-42) peptides of Alzheimer's disease. J Mol Biol. 1999 Jan 15;285(2):755–773. doi: 10.1006/jmbi.1998.2348. [DOI] [PubMed] [Google Scholar]
- Sticht H., Bayer P., Willbold D., Dames S., Hilbich C., Beyreuther K., Frank R. W., Rösch P. Structure of amyloid A4-(1-40)-peptide of Alzheimer's disease. Eur J Biochem. 1995 Oct 1;233(1):293–298. doi: 10.1111/j.1432-1033.1995.293_1.x. [DOI] [PubMed] [Google Scholar]
- Talafous J., Marcinowski K. J., Klopman G., Zagorski M. G. Solution structure of residues 1-28 of the amyloid beta-peptide. Biochemistry. 1994 Jun 28;33(25):7788–7796. doi: 10.1021/bi00191a006. [DOI] [PubMed] [Google Scholar]
- Tjernberg L. O., Callaway D. J., Tjernberg A., Hahne S., Lilliehök C., Terenius L., Thyberg J., Nordstedt C. A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem. 1999 Apr 30;274(18):12619–12625. doi: 10.1074/jbc.274.18.12619. [DOI] [PubMed] [Google Scholar]
- Tjernberg L. O., Näslund J., Lindqvist F., Johansson J., Karlström A. R., Thyberg J., Terenius L., Nordstedt C. Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J Biol Chem. 1996 Apr 12;271(15):8545–8548. doi: 10.1074/jbc.271.15.8545. [DOI] [PubMed] [Google Scholar]
- Tjernberg L. O., Pramanik A., Björling S., Thyberg P., Thyberg J., Nordstedt C., Berndt K. D., Terenius L., Rigler R. Amyloid beta-peptide polymerization studied using fluorescence correlation spectroscopy. Chem Biol. 1999 Jan;6(1):53–62. doi: 10.1016/S1074-5521(99)80020-9. [DOI] [PubMed] [Google Scholar]
- Walsh D. M., Tseng B. P., Rydel R. E., Podlisny M. B., Selkoe D. J. The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry. 2000 Sep 5;39(35):10831–10839. doi: 10.1021/bi001048s. [DOI] [PubMed] [Google Scholar]
- Wang R., Sweeney D., Gandy S. E., Sisodia S. S. The profile of soluble amyloid beta protein in cultured cell media. Detection and quantification of amyloid beta protein and variants by immunoprecipitation-mass spectrometry. J Biol Chem. 1996 Dec 13;271(50):31894–31902. doi: 10.1074/jbc.271.50.31894. [DOI] [PubMed] [Google Scholar]
- Wouters M. A., Curmi P. M. An analysis of side chain interactions and pair correlations within antiparallel beta-sheets: the differences between backbone hydrogen-bonded and non-hydrogen-bonded residue pairs. Proteins. 1995 Jun;22(2):119–131. doi: 10.1002/prot.340220205. [DOI] [PubMed] [Google Scholar]
- Yang A. S., Honig B. Free energy determinants of secondary structure formation: II. Antiparallel beta-sheets. J Mol Biol. 1995 Sep 22;252(3):366–376. doi: 10.1006/jmbi.1995.0503. [DOI] [PubMed] [Google Scholar]