Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) contains two nucleotide-binding domains (NBDs) or ATP-binding cassettes (ABCs) that characterize a large family of membrane transporters. Although the three-dimensional structures of these domains from several ABC proteins have been determined, this is not the case for CFTR, and hence the domains are defined simply on the basis of sequence alignment. The functional C-terminal boundary of NBD1 of CFTR was located by analysis of chloride channel function [Chan, Csanady, Seto-Young, Nairn and Gadsby (2000) J. Gen. Physiol. 116, 163-180]. However, the boundary between the C-terminal end of NBD2 and sequences further downstream in the whole protein, that are important for its cellular localization and endocytotic turnover, has not been defined. We have now done this by assaying the influence of progressive C-terminal truncations on photolabelling of NBD2 by 8-azido-ATP, which reflects hydrolysis, as well as binding, at that domain, and on NBD2-dependent channel gating itself. The boundary defined in this way is between residues 1420 and 1424, which corresponds to the final beta-strand in aligned NBDs whose structures have been determined. Utilization of this information should facilitate the generation of monodisperse NBD2 polypeptides for structural analysis, which until now has not been possible. The established boundary includes within NBD2 a hydrophobic patch of four residues (1413-1416) previously shown to be essential for CFTR maturation and stability [Gentzsch and Riordan (2001) J. Biol. Chem. 276, 1291-1298]. This hydrophobic cluster is conserved in most ABC proteins, and on alignment with ones of known structure constitutes the penultimate beta-strand of the domain which is likely to participate in essential structure-stabilizing beta-sheet formation.
Full Text
The Full Text of this article is available as a PDF (375.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
- Aleksandrov A. A., Chang X., Aleksandrov L., Riordan J. R. The non-hydrolytic pathway of cystic fibrosis transmembrane conductance regulator ion channel gating. J Physiol. 2000 Oct 15;528(Pt 2):259–265. doi: 10.1111/j.1469-7793.2000.00259.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aleksandrov A. A., Riordan J. R. Regulation of CFTR ion channel gating by MgATP. FEBS Lett. 1998 Jul 10;431(1):97–101. doi: 10.1016/s0014-5793(98)00713-3. [DOI] [PubMed] [Google Scholar]
- Aleksandrov L., Mengos A., Chang X., Aleksandrov A., Riordan J. R. Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 2001 Jan 29;276(16):12918–12923. doi: 10.1074/jbc.M100515200. [DOI] [PubMed] [Google Scholar]
- Aleksandrov Luba, Aleksandrov Andrei A., Chang Xiu-Bao, Riordan John R. The First Nucleotide Binding Domain of Cystic Fibrosis Transmembrane Conductance Regulator Is a Site of Stable Nucleotide Interaction, whereas the Second Is a Site of Rapid Turnover. J Biol Chem. 2002 Feb 22;277(18):15419–15425. doi: 10.1074/jbc.M111713200. [DOI] [PubMed] [Google Scholar]
- Anderson M. P., Welsh M. J. Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains. Science. 1992 Sep 18;257(5077):1701–1704. doi: 10.1126/science.1382316. [DOI] [PubMed] [Google Scholar]
- Chan K. W., Csanády L., Seto-Young D., Nairn A. C., Gadsby D. C. Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain. J Gen Physiol. 2000 Aug;116(2):163–180. doi: 10.1085/jgp.116.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang G., Roth C. B. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science. 2001 Sep 7;293(5536):1793–1800. doi: 10.1126/science.293.5536.1793. [DOI] [PubMed] [Google Scholar]
- Chang X. B., Hou Y. X., Riordan J. R. ATPase activity of purified multidrug resistance-associated protein. J Biol Chem. 1997 Dec 5;272(49):30962–30968. doi: 10.1074/jbc.272.49.30962. [DOI] [PubMed] [Google Scholar]
- Chang X. B., Tabcharani J. A., Hou Y. X., Jensen T. J., Kartner N., Alon N., Hanrahan J. W., Riordan J. R. Protein kinase A (PKA) still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites. J Biol Chem. 1993 May 25;268(15):11304–11311. [PubMed] [Google Scholar]
- Dean M., Rzhetsky A., Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001 Jul;11(7):1156–1166. doi: 10.1101/gr.184901. [DOI] [PubMed] [Google Scholar]
- Diederichs K., Diez J., Greller G., Müller C., Breed J., Schnell C., Vonrhein C., Boos W., Welte W. Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J. 2000 Nov 15;19(22):5951–5961. doi: 10.1093/emboj/19.22.5951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duffieux F., Annereau J. P., Boucher J., Miclet E., Pamlard O., Schneider M., Stoven V., Lallemand J. Y. Nucleotide-binding domain 1 of cystic fibrosis transmembrane conductance regulator production of a suitable protein for structural studies. Eur J Biochem. 2000 Sep;267(17):5306–5312. doi: 10.1046/j.1432-1327.2000.01614.x. [DOI] [PubMed] [Google Scholar]
- Gaudet R., Wiley D. C. Structure of the ABC ATPase domain of human TAP1, the transporter associated with antigen processing. EMBO J. 2001 Sep 3;20(17):4964–4972. doi: 10.1093/emboj/20.17.4964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gentzsch M., Riordan J. R. Localization of sequences within the C-terminal domain of the cystic fibrosis transmembrane conductance regulator which impact maturation and stability. J Biol Chem. 2001 Jan 12;276(2):1291–1298. doi: 10.1074/jbc.M003672200. [DOI] [PubMed] [Google Scholar]
- Haardt M., Benharouga M., Lechardeur D., Kartner N., Lukacs G. L. C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation. J Biol Chem. 1999 Jul 30;274(31):21873–21877. doi: 10.1074/jbc.274.31.21873. [DOI] [PubMed] [Google Scholar]
- Hartman J., Huang Z., Rado T. A., Peng S., Jilling T., Muccio D. D., Sorscher E. J. Recombinant synthesis, purification, and nucleotide binding characteristics of the first nucleotide binding domain of the cystic fibrosis gene product. J Biol Chem. 1992 Apr 5;267(10):6455–6458. [PubMed] [Google Scholar]
- Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
- Hou Y., Cui L., Riordan J. R., Chang X. Allosteric interactions between the two non-equivalent nucleotide binding domains of multidrug resistance protein MRP1. J Biol Chem. 2000 Jul 7;275(27):20280–20287. doi: 10.1074/jbc.M001109200. [DOI] [PubMed] [Google Scholar]
- Howell L. D., Borchardt R., Cohn J. A. ATP hydrolysis by a CFTR domain: pharmacology and effects of G551D mutation. Biochem Biophys Res Commun. 2000 May 10;271(2):518–525. doi: 10.1006/bbrc.2000.2659. [DOI] [PubMed] [Google Scholar]
- Hu W., Howard M., Lukacs G. L. Multiple endocytic signals in the C-terminal tail of the cystic fibrosis transmembrane conductance regulator. Biochem J. 2001 Mar 15;354(Pt 3):561–572. doi: 10.1042/0264-6021:3540561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hung L. W., Wang I. X., Nikaido K., Liu P. Q., Ames G. F., Kim S. H. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature. 1998 Dec 17;396(6712):703–707. doi: 10.1038/25393. [DOI] [PubMed] [Google Scholar]
- Ikuma M., Welsh M. J. Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8675–8680. doi: 10.1073/pnas.140220597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karpowich N., Martsinkevich O., Millen L., Yuan Y. R., Dai P. L., MacVey K., Thomas P. J., Hunt J. F. Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure. 2001 Jul 3;9(7):571–586. doi: 10.1016/s0969-2126(01)00617-7. [DOI] [PubMed] [Google Scholar]
- Kartner N., Augustinas O., Jensen T. J., Naismith A. L., Riordan J. R. Mislocalization of delta F508 CFTR in cystic fibrosis sweat gland. Nat Genet. 1992 Aug;1(5):321–327. doi: 10.1038/ng0892-321. [DOI] [PubMed] [Google Scholar]
- Ko Y. H., Pedersen P. L. The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator can function as an active ATPase. J Biol Chem. 1995 Sep 22;270(38):22093–22096. doi: 10.1074/jbc.270.38.22093. [DOI] [PubMed] [Google Scholar]
- Ko Y. H., Thomas P. J., Delannoy M. R., Pedersen P. L. The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and delta F508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein. J Biol Chem. 1993 Nov 15;268(32):24330–24338. [PubMed] [Google Scholar]
- Ko Y. H., Thomas P. J., Delannoy M. R., Pedersen P. L. The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and delta F508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein. J Biol Chem. 1993 Nov 15;268(32):24330–24338. [PubMed] [Google Scholar]
- Ko Y. H., Thomas P. J., Pedersen P. L. The cystic fibrosis transmembrane conductance regulator. Nucleotide binding to a synthetic peptide segment from the second predicted nucleotide binding fold. J Biol Chem. 1994 May 20;269(20):14584–14588. [PubMed] [Google Scholar]
- Lerner-Marmarosh N., Gimi K., Urbatsch I. L., Gros P., Senior A. E. Large scale purification of detergent-soluble P-glycoprotein from Pichia pastoris cells and characterization of nucleotide binding properties of wild-type, Walker A, and Walker B mutant proteins. J Biol Chem. 1999 Dec 3;274(49):34711–34718. doi: 10.1074/jbc.274.49.34711. [DOI] [PubMed] [Google Scholar]
- Locher Kaspar P., Lee Allen T., Rees Douglas C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science. 2002 May 10;296(5570):1091–1098. doi: 10.1126/science.1071142. [DOI] [PubMed] [Google Scholar]
- Lu N. T., Pedersen P. L. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region. Arch Biochem Biophys. 2000 Mar 1;375(1):7–20. doi: 10.1006/abbi.1999.1656. [DOI] [PubMed] [Google Scholar]
- Pasyk E. A., Morin X. K., Zeman P., Garami E., Galley K., Huan L. J., Wang Y., Bear C. E. A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function. J Biol Chem. 1998 Nov 27;273(48):31759–31764. doi: 10.1074/jbc.273.48.31759. [DOI] [PubMed] [Google Scholar]
- Prince L. S., Peter K., Hatton S. R., Zaliauskiene L., Cotlin L. F., Clancy J. P., Marchase R. B., Collawn J. F. Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator requires a tyrosine-based signal. J Biol Chem. 1999 Feb 5;274(6):3602–3609. doi: 10.1074/jbc.274.6.3602. [DOI] [PubMed] [Google Scholar]
- Qu B. H., Thomas P. J. Alteration of the cystic fibrosis transmembrane conductance regulator folding pathway. J Biol Chem. 1996 Mar 29;271(13):7261–7264. doi: 10.1074/jbc.271.13.7261. [DOI] [PubMed] [Google Scholar]
- Raghuram V., Mak D. O., Foskett J. K. Regulation of cystic fibrosis transmembrane conductance regulator single-channel gating by bivalent PDZ-domain-mediated interaction. Proc Natl Acad Sci U S A. 2001 Jan 23;98(3):1300–1305. doi: 10.1073/pnas.031538898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randak C., Neth P., Auerswald E. A., Assfalg-Machleidt I., Roscher A. A., Hadorn H. B., Machleidt W. A recombinant polypeptide model of the second predicted nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator is a GTP-binding protein. FEBS Lett. 1996 Nov 25;398(1):97–100. doi: 10.1016/s0014-5793(96)01217-3. [DOI] [PubMed] [Google Scholar]
- Randak C., Neth P., Auerswald E. A., Eckerskorn C., Assfalg-Machleidt I., Machleidt W. A recombinant polypeptide model of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator functions as an active ATPase, GTPase and adenylate kinase. FEBS Lett. 1997 Jun 30;410(2-3):180–186. doi: 10.1016/s0014-5793(97)00574-7. [DOI] [PubMed] [Google Scholar]
- Randak C., Roscher A. A., Hadorn H. B., Assfalg-Machleidt I., Auerswald E. A., Machleidt W. Expression and functional properties of the second predicted nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator fused to glutathione-S-transferase. FEBS Lett. 1995 Apr 17;363(1-2):189–194. doi: 10.1016/0014-5793(95)00314-y. [DOI] [PubMed] [Google Scholar]
- Rich D. P., Gregory R. J., Cheng S. H., Smith A. E., Welsh M. J. Effect of deletion mutations on the function of CFTR chloride channels. Receptors Channels. 1993;1(3):221–232. [PubMed] [Google Scholar]
- Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
- Schneider C., Newman R. A., Sutherland D. R., Asser U., Greaves M. F. A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem. 1982 Sep 25;257(18):10766–10769. [PubMed] [Google Scholar]
- Short D. B., Trotter K. W., Reczek D., Kreda S. M., Bretscher A., Boucher R. C., Stutts M. J., Milgram S. L. An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J Biol Chem. 1998 Jul 31;273(31):19797–19801. doi: 10.1074/jbc.273.31.19797. [DOI] [PubMed] [Google Scholar]
- Thomas P. J., Shenbagamurthi P., Sondek J., Hullihen J. M., Pedersen P. L. The cystic fibrosis transmembrane conductance regulator. Effects of the most common cystic fibrosis-causing mutation on the secondary structure and stability of a synthetic peptide. J Biol Chem. 1992 Mar 25;267(9):5727–5730. [PubMed] [Google Scholar]
- Thomas P. J., Shenbagamurthi P., Ysern X., Pedersen P. L. Cystic fibrosis transmembrane conductance regulator: nucleotide binding to a synthetic peptide. Science. 1991 Feb 1;251(4993):555–557. doi: 10.1126/science.1703660. [DOI] [PubMed] [Google Scholar]
- Vankeerberghen A., Wei L., Jaspers M., Cassiman J. J., Nilius B., Cuppens H. Characterization of 19 disease-associated missense mutations in the regulatory domain of the cystic fibrosis transmembrane conductance regulator. Hum Mol Genet. 1998 Oct;7(11):1761–1769. doi: 10.1093/hmg/7.11.1761. [DOI] [PubMed] [Google Scholar]
- Wang S., Yue H., Derin R. B., Guggino W. B., Li M. Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Cell. 2000 Sep 29;103(1):169–179. doi: 10.1016/s0092-8674(00)00096-9. [DOI] [PubMed] [Google Scholar]
- Weixel K. M., Bradbury N. A. Mu 2 binding directs the cystic fibrosis transmembrane conductance regulator to the clathrin-mediated endocytic pathway. J Biol Chem. 2001 Sep 17;276(49):46251–46259. doi: 10.1074/jbc.M104545200. [DOI] [PubMed] [Google Scholar]
- Yoshida M., Amano T. A common topology of proteins catalyzing ATP-triggered reactions. FEBS Lett. 1995 Feb 6;359(1):1–5. doi: 10.1016/0014-5793(94)01438-7. [DOI] [PubMed] [Google Scholar]
- Yuan Y. R., Blecker S., Martsinkevich O., Millen L., Thomas P. J., Hunt J. F. The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. J Biol Chem. 2001 Jun 11;276(34):32313–32321. doi: 10.1074/jbc.M100758200. [DOI] [PubMed] [Google Scholar]
- Zerhusen B., Ma J. Function of the second nucleotide-binding fold in the CFTR chloride channel. FEBS Lett. 1999 Oct 8;459(2):177–185. doi: 10.1016/s0014-5793(99)01230-2. [DOI] [PubMed] [Google Scholar]