Abstract
The function of the transcription regulator ArgRIII in the expression of several genes involved in the metabolism of arginine in yeast has been well studied. It was previously reported that it is also an inositol phosphate multikinase and an important factor of the mRNA export pathway [reviewed by Shears (2000) Bioessays 22, 786-789]. In the present study we report the cloning of a full-length 1248-bp cDNA encoding a human inositol phosphate multikinase (IPMK). This protein has a calculated molecular mass of 47.219 kDa. Functionally important motifs [inositol phosphate-binding site, ATP-binding site, catalytically important SSLL (Ser-Ser-Leu-Leu) domain] are conserved between the human IPMK and yeast ArgRIII. Bacterially expressed protein demonstrated an inositol phosphate multikinase activity similar to that of yeast ArgRIII. Ins(1,4,5)P3 is phosphorylated at positions 3 and 6 up to Ins(1,3,4,5,6)P5. The human IPMK fused with a fluorescent protein tag is localized predominantly in the nucleus when transiently expressed in mammalian cells. A basic cluster in the protein's C-terminus is positively involved in nuclear targeting. These findings are consistent with the concept of a nuclear inositol phosphate signalling and phosphorylation pathway in mammalian cells.
Full Text
The Full Text of this article is available as a PDF (304.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amar N., Messenguy F., El Bakkoury M., Dubois E. ArgRII, a component of the ArgR-Mcm1 complex involved in the control of arginine metabolism in Saccharomyces cerevisiae, is the sensor of arginine. Mol Cell Biol. 2000 Mar;20(6):2087–2097. doi: 10.1128/mcb.20.6.2087-2097.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bercy J., Dubois E., Messenguy F. Regulation of arginine metabolism in Saccharomyces cerevisiae: expression of the three ARGR regulatory genes and cellular localization of their products. Gene. 1987;55(2-3):277–285. doi: 10.1016/0378-1119(87)90287-3. [DOI] [PubMed] [Google Scholar]
- Bertsch U., Haefs M., Möller M., Deschermeier C., Fanick W., Kitzerow A., Ozaki S., Meyer H. E., Mayr G. W. A novel A-isoform-like inositol 1,4,5-trisphosphate 3-kinase from chicken erythrocytes exhibits alternative splicing and conservation of intron positions between vertebrates and invertebrates. Gene. 1999 Mar 4;228(1-2):61–71. doi: 10.1016/s0378-1119(99)00018-9. [DOI] [PubMed] [Google Scholar]
- Christophe D., Christophe-Hobertus C., Pichon B. Nuclear targeting of proteins: how many different signals? Cell Signal. 2000 May;12(5):337–341. doi: 10.1016/s0898-6568(00)00077-2. [DOI] [PubMed] [Google Scholar]
- Cocco L., Martelli A. M., Gilmour R. S., Rhee S. G., Manzoli F. A. Nuclear phospholipase C and signaling. Biochim Biophys Acta. 2001 Jan 15;1530(1):1–14. doi: 10.1016/s1388-1981(00)00169-4. [DOI] [PubMed] [Google Scholar]
- Dang C. V., Lee W. M. Identification of the human c-myc protein nuclear translocation signal. Mol Cell Biol. 1988 Oct;8(10):4048–4054. doi: 10.1128/mcb.8.10.4048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubois E., Dewaste V., Erneux C., Messenguy F. Inositol polyphosphate kinase activity of Arg82/ArgRIII is not required for the regulation of the arginine metabolism in yeast. FEBS Lett. 2000 Dec 15;486(3):300–304. doi: 10.1016/s0014-5793(00)02318-8. [DOI] [PubMed] [Google Scholar]
- El Bakkoury M., Dubois E., Messenguy F. Recruitment of the yeast MADS-box proteins, ArgRI and Mcm1 by the pleiotropic factor ArgRIII is required for their stability. Mol Microbiol. 2000 Jan;35(1):15–31. doi: 10.1046/j.1365-2958.2000.01665.x. [DOI] [PubMed] [Google Scholar]
- Fontes M. R., Teh T., Kobe B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol. 2000 Apr 14;297(5):1183–1194. doi: 10.1006/jmbi.2000.3642. [DOI] [PubMed] [Google Scholar]
- Guse A. H., Goldwich A., Weber K., Mayr G. W. Non-radioactive, isomer-specific inositol phosphate mass determinations: high-performance liquid chromatography-micro-metal-dye detection strongly improves speed and sensitivity of analyses from cells and micro-enzyme assays. J Chromatogr B Biomed Appl. 1995 Oct 20;672(2):189–198. doi: 10.1016/0378-4347(95)00219-9. [DOI] [PubMed] [Google Scholar]
- Imagawa M., Sakaue R., Tanabe A., Osada S., Nishihara T. Two nuclear localization signals are required for nuclear translocation of nuclear factor 1-A. FEBS Lett. 2000 Nov 3;484(2):118–124. doi: 10.1016/s0014-5793(00)02119-0. [DOI] [PubMed] [Google Scholar]
- Irvine R. F., Schell M. J. Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol. 2001 May;2(5):327–338. doi: 10.1038/35073015. [DOI] [PubMed] [Google Scholar]
- Ives E. B., Nichols J., Wente S. R., York J. D. Biochemical and functional characterization of inositol 1,3,4,5, 6-pentakisphosphate 2-kinases. J Biol Chem. 2000 Nov 24;275(47):36575–36583. doi: 10.1074/jbc.M007586200. [DOI] [PubMed] [Google Scholar]
- Mayr G. W. A novel metal-dye detection system permits picomolar-range h.p.l.c. analysis of inositol polyphosphates from non-radioactively labelled cell or tissue specimens. Biochem J. 1988 Sep 1;254(2):585–591. doi: 10.1042/bj2540585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melén K., Julkunen I. Nuclear cotransport mechanism of cytoplasmic human MxB protein. J Biol Chem. 1997 Dec 19;272(51):32353–32359. doi: 10.1074/jbc.272.51.32353. [DOI] [PubMed] [Google Scholar]
- Morrison B. H., Bauer J. A., Kalvakolanu D. V., Lindner D. J. Inositol hexakisphosphate kinase 2 mediates growth suppressive and apoptotic effects of interferon-beta in ovarian carcinoma cells. J Biol Chem. 2001 May 3;276(27):24965–24970. doi: 10.1074/jbc.M101161200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Odom A. R., Stahlberg A., Wente S. R., York J. D. A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science. 2000 Mar 17;287(5460):2026–2029. doi: 10.1126/science.287.5460.2026. [DOI] [PubMed] [Google Scholar]
- Saiardi A., Caffrey J. J., Snyder S. H., Shears S. B. Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett. 2000 Feb 18;468(1):28–32. doi: 10.1016/s0014-5793(00)01194-7. [DOI] [PubMed] [Google Scholar]
- Saiardi A., Caffrey J. J., Snyder S. H., Shears S. B. The inositol hexakisphosphate kinase family. Catalytic flexibility and function in yeast vacuole biogenesis. J Biol Chem. 2000 Aug 11;275(32):24686–24692. doi: 10.1074/jbc.M002750200. [DOI] [PubMed] [Google Scholar]
- Saiardi A., Erdjument-Bromage H., Snowman A. M., Tempst P., Snyder S. H. Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol. 1999 Nov 18;9(22):1323–1326. doi: 10.1016/s0960-9822(00)80055-x. [DOI] [PubMed] [Google Scholar]
- Saiardi A., Nagata E., Luo H. R., Sawa A., Luo X., Snowman A. M., Snyder S. H. Mammalian inositol polyphosphate multikinase synthesizes inositol 1,4,5-trisphosphate and an inositol pyrophosphate. Proc Natl Acad Sci U S A. 2001 Feb 13;98(5):2306–2311. doi: 10.1073/pnas.041614598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saiardi A., Nagata E., Luo H. R., Snowman A. M., Snyder S. H. Identification and characterization of a novel inositol hexakisphosphate kinase. J Biol Chem. 2001 Aug 13;276(42):39179–39185. doi: 10.1074/jbc.M106842200. [DOI] [PubMed] [Google Scholar]
- Schell M. J., Erneux C., Irvine R. F. Inositol 1,4,5-trisphosphate 3-kinase A associates with F-actin and dendritic spines via its N terminus. J Biol Chem. 2001 Jul 23;276(40):37537–37546. doi: 10.1074/jbc.M104101200. [DOI] [PubMed] [Google Scholar]
- Soriano S., Thomas S., High S., Griffiths G., D'santos C., Cullen P., Banting G. Membrane association, localization and topology of rat inositol 1,4,5-trisphosphate 3-kinase B: implications for membrane traffic and Ca2+ homoeostasis. Biochem J. 1997 Jun 1;324(Pt 2):579–589. doi: 10.1042/bj3240579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens L., Radenberg T., Thiel U., Vogel G., Khoo K. H., Dell A., Jackson T. R., Hawkins P. T., Mayr G. W. The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J Biol Chem. 1993 Feb 25;268(6):4009–4015. [PubMed] [Google Scholar]
- Wang W., Malcolm B. A. Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. Biotechniques. 1999 Apr;26(4):680–682. doi: 10.2144/99264st03. [DOI] [PubMed] [Google Scholar]
- York J. D., Odom A. R., Murphy R., Ives E. B., Wente S. R. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science. 1999 Jul 2;285(5424):96–100. doi: 10.1126/science.285.5424.96. [DOI] [PubMed] [Google Scholar]
- Zhang T., Caffrey J. J., Shears S. B. The transcriptional regulator, Arg82, is a hybrid kinase with both monophosphoinositol and diphosphoinositol polyphosphate synthase activity. FEBS Lett. 2001 Apr 13;494(3):208–212. doi: 10.1016/s0014-5793(01)02351-1. [DOI] [PubMed] [Google Scholar]
- de Larco J. E., Todaro G. J. Epithelioid and fibroblastic rat kidney cell clones: epidermal growth factor (EGF) receptors and the effect of mouse sarcoma virus transformation. J Cell Physiol. 1978 Mar;94(3):335–342. doi: 10.1002/jcp.1040940311. [DOI] [PubMed] [Google Scholar]