Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 1;367(Pt 3):849–855. doi: 10.1042/BJ20020986

Membrane perturbations induced by the apoptotic Bax protein.

Raquel F Epand 1, Jean-Claude Martinou 1, Sylvie Montessuit 1, Richard M Epand 1
PMCID: PMC1222950  PMID: 12180909

Abstract

The apoptotic protein Bax, in oligomeric form, is effective in promoting both leakage and lipid mixing in liposomes composed of cardiolipin and phosphatidylethanolamine and/or phosphatidylcholine, upon the addition of calcium. In contrast, monomeric Bax is not active. At low concentrations at which caspase-8-cut Bid (tBid) alone has little effect on leakage, tBid augments the leakage caused by monomeric Bax. When solutions of oligomeric Bax are diluted to lower detergent concentrations than those required for Bax oligomerization, the protein is initially active in inducing liposomal leakage, indicating that the potency of the oligomeric form is not a consequence of being initially added to the liposomes in a high detergent concentration. However, in solutions of low detergent concentration, in the absence of liposomes, the oligomer gradually loses its lytic potency. This is accompanied by a loss of binding of bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulphonic acid), indicating the loss of exposed hydrophobic sites, as well as a loss of the ability of the protein to translocate to membranes. Membrane translocation was measured by an energy-transfer assay. It was demonstrated that membrane binding was greatly enhanced by oligomerization and by the presence of calcium. Thus the membrane-active form of Bax is unstable in the absence of detergent or lipid. In addition, we find that translocation to the membrane is enhanced by oligomerization as well as by the presence of high concentrations of calcium.

Full Text

The Full Text of this article is available as a PDF (167.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonsson B., Conti F., Ciavatta A., Montessuit S., Lewis S., Martinou I., Bernasconi L., Bernard A., Mermod J. J., Mazzei G. Inhibition of Bax channel-forming activity by Bcl-2. Science. 1997 Jul 18;277(5324):370–372. doi: 10.1126/science.277.5324.370. [DOI] [PubMed] [Google Scholar]
  2. Antonsson B., Montessuit S., Lauper S., Eskes R., Martinou J. C. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J. 2000 Jan 15;345(Pt 2):271–278. [PMC free article] [PubMed] [Google Scholar]
  3. Antonsson B., Montessuit S., Sanchez B., Martinou J. C. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem. 2001 Jan 2;276(15):11615–11623. doi: 10.1074/jbc.M010810200. [DOI] [PubMed] [Google Scholar]
  4. Basañez G., Nechushtan A., Drozhinin O., Chanturiya A., Choe E., Tutt S., Wood K. A., Hsu Y., Zimmerberg J., Youle R. J. Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5492–5497. doi: 10.1073/pnas.96.10.5492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Csordás G., Thomas A. P., Hajnóczky G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J. 1999 Jan 4;18(1):96–108. doi: 10.1093/emboj/18.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Giorgi FrancesaA, Lartigue Lydia, Bauer Manuel K. A., Schubert Alexis, Grimm Stefan, Hanson George T., Remington S. James, Youle Richard J., Ichas François. The permeability transition pore signals apoptosis by directing Bax translocation and multimerization. FASEB J. 2002 Apr;16(6):607–609. doi: 10.1096/fj.01-0269fje. [DOI] [PubMed] [Google Scholar]
  7. Deckwerth T. L., Elliott J. L., Knudson C. M., Johnson E. M., Jr, Snider W. D., Korsmeyer S. J. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron. 1996 Sep;17(3):401–411. doi: 10.1016/s0896-6273(00)80173-7. [DOI] [PubMed] [Google Scholar]
  8. Desagher S., Martinou J. C. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000 Sep;10(9):369–377. doi: 10.1016/s0962-8924(00)01803-1. [DOI] [PubMed] [Google Scholar]
  9. Ellens H., Bentz J., Szoka F. C. H+- and Ca2+-induced fusion and destabilization of liposomes. Biochemistry. 1985 Jun 18;24(13):3099–3106. doi: 10.1021/bi00334a005. [DOI] [PubMed] [Google Scholar]
  10. Epand Raquel F., Martinou Jean-Claude, Fornallaz-Mulhauser Monique, Hughes Donald W., Epand Richard M. The apoptotic protein tBid promotes leakage by altering membrane curvature. J Biol Chem. 2002 Jun 24;277(36):32632–32639. doi: 10.1074/jbc.M202396200. [DOI] [PubMed] [Google Scholar]
  11. Eskes R., Desagher S., Antonsson B., Martinou J. C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol. 2000 Feb;20(3):929–935. doi: 10.1128/mcb.20.3.929-935.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ferri K. F., Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001 Nov;3(11):E255–E263. doi: 10.1038/ncb1101-e255. [DOI] [PubMed] [Google Scholar]
  13. Gogvadze V., Robertson J. D., Zhivotovsky B., Orrenius S. Cytochrome c release occurs via Ca2+-dependent and Ca2+-independent mechanisms that are regulated by Bax. J Biol Chem. 2001 Mar 22;276(22):19066–19071. doi: 10.1074/jbc.M100614200. [DOI] [PubMed] [Google Scholar]
  14. Goldstein J. C., Waterhouse N. J., Juin P., Evan G. I., Green D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol. 2000 Mar;2(3):156–162. doi: 10.1038/35004029. [DOI] [PubMed] [Google Scholar]
  15. Hsu Y. T., Wolter K. G., Youle R. J. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3668–3672. doi: 10.1073/pnas.94.8.3668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim K. M., Giedt C. D., Basañez G., O'Neill J. W., Hill J. J., Han Y. H., Tzung S. P., Zimmerberg J., Hockenbery D. M., Zhang K. Y. Biophysical characterization of recombinant human Bcl-2 and its interactions with an inhibitory ligand, antimycin A. Biochemistry. 2001 Apr 24;40(16):4911–4922. doi: 10.1021/bi002368e. [DOI] [PubMed] [Google Scholar]
  17. Kim T. H., Zhao Y., Barber M. J., Kuharsky D. K., Yin X. M. Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax. J Biol Chem. 2000 Dec 15;275(50):39474–39481. doi: 10.1074/jbc.M003370200. [DOI] [PubMed] [Google Scholar]
  18. Lam M., Dubyak G., Distelhorst C. W. Effect of glucocorticosteroid treatment on intracellular calcium homeostasis in mouse lymphoma cells. Mol Endocrinol. 1993 May;7(5):686–693. doi: 10.1210/mend.7.5.8316252. [DOI] [PubMed] [Google Scholar]
  19. Madesh Muniswamy, Antonsson Bruno, Srinivasula Srinivasa M., Alnemri Emad S., Hajnóczky György. Rapid kinetics of tBid-induced cytochrome c and Smac/DIABLO release and mitochondrial depolarization. J Biol Chem. 2001 Dec 6;277(7):5651–5659. doi: 10.1074/jbc.M108171200. [DOI] [PubMed] [Google Scholar]
  20. Martinou J. C., Green D. R. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol. 2001 Jan;2(1):63–67. doi: 10.1038/35048069. [DOI] [PubMed] [Google Scholar]
  21. McGinnis K. M., Gnegy M. E., Wang K. K. Endogenous bax translocation in SH-SY5Y human neuroblastoma cells and cerebellar granule neurons undergoing apoptosis. J Neurochem. 1999 May;72(5):1899–1906. doi: 10.1046/j.1471-4159.1999.0721899.x. [DOI] [PubMed] [Google Scholar]
  22. Montessuit S., Mazzei G., Magnenat E., Antonsson B. Expression and purification of full-length human Bax alpha. Protein Expr Purif. 1999 Mar;15(2):202–206. doi: 10.1006/prep.1998.1010. [DOI] [PubMed] [Google Scholar]
  23. Nutt Leta K., Chandra Joya, Pataer Abujiang, Fang Bingliang, Roth Jack A., Swisher Stephen G., O'Neil Roger G., McConkey David J. Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem. 2002 Mar 21;277(23):20301–20308. doi: 10.1074/jbc.M201604200. [DOI] [PubMed] [Google Scholar]
  24. Nutt Leta K., Pataer Abujiang, Pahler Jessica, Fang Bingliang, Roth Jack, McConkey David J., Swisher Stephen G. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem. 2001 Dec 6;277(11):9219–9225. doi: 10.1074/jbc.M106817200. [DOI] [PubMed] [Google Scholar]
  25. Ortiz A., Killian J. A., Verkleij A. J., Wilschut J. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. Biophys J. 1999 Oct;77(4):2003–2014. doi: 10.1016/S0006-3495(99)77041-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ott Martin, Robertson John D., Gogvadze Vladimir, Zhivotovsky Boris, Orrenius Sten. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci U S A. 2002 Jan 29;99(3):1259–1263. doi: 10.1073/pnas.241655498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pan Z., Bhat M. B., Nieminen A. L., Ma J. Synergistic movements of Ca(2+) and Bax in cells undergoing apoptosis. J Biol Chem. 2001 Jun 18;276(34):32257–32263. doi: 10.1074/jbc.M100178200. [DOI] [PubMed] [Google Scholar]
  28. Pavlov E. V., Priault M., Pietkiewicz D., Cheng E. H., Antonsson B., Manon S., Korsmeyer S. J., Mannella C. A., Kinnally K. W. A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol. 2001 Nov 26;155(5):725–731. doi: 10.1083/jcb.200107057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rand R. P., Sengupta S. Cardiolipin forms hexagonal structures with divalent cations. Biochim Biophys Acta. 1972 Feb 11;255(2):484–492. doi: 10.1016/0005-2736(72)90152-6. [DOI] [PubMed] [Google Scholar]
  30. Rizzuto R., Brini M., Murgia M., Pozzan T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 1993 Oct 29;262(5134):744–747. doi: 10.1126/science.8235595. [DOI] [PubMed] [Google Scholar]
  31. Rizzuto R., Pinton P., Carrington W., Fay F. S., Fogarty K. E., Lifshitz L. M., Tuft R. A., Pozzan T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998 Jun 12;280(5370):1763–1766. doi: 10.1126/science.280.5370.1763. [DOI] [PubMed] [Google Scholar]
  32. Rosen C. G., Weber G. Dimer formation from 1-amino-8-naphthalenesulfonate catalyzed by bovine serum albumin. A new fluorescent molecule with exceptional binding properties. Biochemistry. 1969 Oct;8(10):3915–3920. doi: 10.1021/bi00838a006. [DOI] [PubMed] [Google Scholar]
  33. Roucou Xavier, Rostovtseva Tatiana, Montessuit Sylvie, Martinou Jean-Claude, Antonsson Bruno. Bid induces cytochrome c-impermeable Bax channels in liposomes. Biochem J. 2002 May 1;363(Pt 3):547–552. doi: 10.1042/0264-6021:3630547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ruffolo S. C., Breckenridge D. G., Nguyen M., Goping I. S., Gross A., Korsmeyer S. J., Li H., Yuan J., Shore G. C. BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ. 2000 Nov;7(11):1101–1108. doi: 10.1038/sj.cdd.4400739. [DOI] [PubMed] [Google Scholar]
  35. Saito M., Korsmeyer S. J., Schlesinger P. H. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol. 2000 Aug;2(8):553–555. doi: 10.1038/35019596. [DOI] [PubMed] [Google Scholar]
  36. Schlesinger P. H., Gross A., Yin X. M., Yamamoto K., Saito M., Waksman G., Korsmeyer S. J. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11357–11362. doi: 10.1073/pnas.94.21.11357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schwab B. L., Guerini D., Didszun C., Bano D., Ferrando-May E., Fava E., Tam J., Xu D., Xanthoudakis S., Nicholson D. W. Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ. 2002 Aug;9(8):818–831. doi: 10.1038/sj.cdd.4401042. [DOI] [PubMed] [Google Scholar]
  38. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  39. Suzuki M., Youle R. J., Tjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell. 2000 Nov 10;103(4):645–654. doi: 10.1016/s0092-8674(00)00167-7. [DOI] [PubMed] [Google Scholar]
  40. Tremblais K., Oliver L., Juin P., Le Cabellec T. M., Meflah K., Vallette F. M. The C-terminus of bax is not a membrane addressing/anchoring signal. Biochem Biophys Res Commun. 1999 Jul 14;260(3):582–591. doi: 10.1006/bbrc.1999.0904. [DOI] [PubMed] [Google Scholar]
  41. Wang K., Gross A., Waksman G., Korsmeyer S. J. Mutagenesis of the BH3 domain of BAX identifies residues critical for dimerization and killing. Mol Cell Biol. 1998 Oct;18(10):6083–6089. doi: 10.1128/mcb.18.10.6083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wei M. C., Zong W. X., Cheng E. H., Lindsten T., Panoutsakopoulou V., Ross A. J., Roth K. A., MacGregor G. R., Thompson C. B., Korsmeyer S. J. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001 Apr 27;292(5517):727–730. doi: 10.1126/science.1059108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wilschut J., Holsappel M., Jansen R. Ca2+-induced fusion of cardiolipin/phosphatidylcholine vesicles monitored by mixing of aqueous contents. Biochim Biophys Acta. 1982 Sep 9;690(2):297–301. doi: 10.1016/0005-2736(82)90334-0. [DOI] [PubMed] [Google Scholar]
  44. Wilschut J., Nir S., Scholma J., Hoekstra D. Kinetics of Ca2+-induced fusion of cardiolipin-phosphatidylcholine vesicles: correlation between vesicle aggregation, bilayer destabilization, and fusion. Biochemistry. 1985 Aug 13;24(17):4630–4636. doi: 10.1021/bi00338a023. [DOI] [PubMed] [Google Scholar]
  45. Wolter K. G., Hsu Y. T., Smith C. L., Nechushtan A., Xi X. G., Youle R. J. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol. 1997 Dec 1;139(5):1281–1292. doi: 10.1083/jcb.139.5.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zha J., Weiler S., Oh K. J., Wei M. C., Korsmeyer S. J. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science. 2000 Dec 1;290(5497):1761–1765. doi: 10.1126/science.290.5497.1761. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES