Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 15;368(Pt 1):29–39. doi: 10.1042/BJ20020845

Syntaxin 7, syntaxin 8, Vti1 and VAMP7 (vesicle-associated membrane protein 7) form an active SNARE complex for early macropinocytic compartment fusion in Dictyostelium discoideum.

Aleksandra Bogdanovic 1, Nelly Bennett 1, Sylvie Kieffer 1, Mathilde Louwagie 1, Takahiro Morio 1, Jérôme Garin 1, Michel Satre 1, Franz Bruckert 1
PMCID: PMC1222979  PMID: 12175335

Abstract

The macropinocytic pathway in Dictyostelium discoideum is organized linearly. After actin-driven internalization, fluid material passes sequentially from endosomes to lysosomes, where molecules are degraded and absorbed. Residual material is exocytosed via post-lysosomal compartments. Syntaxin 7 is a SNARE (soluble N -ethylmaleimide-sensitive fusion protein attachment protein receptor) protein that is present and active in D. discoideum endosomes [Bogdanovic, Bruckert, Morio and Satre (2000) J. Biol. Chem. 275, 36691-36697]. Here we report the identification of its main SNARE partners by co-immunoprecipitation and MS peptide sequencing. The syntaxin 7 complex contains two co-t-SNAREs [Vti1 (Vps10p tail interactor 1) and syntaxin 8] and a v-SNARE [VAMP7 (vesicle-associated membrane protein 7)] (where t-SNAREs are SNAREs of the target compartment and v-SNAREs are SNAREs present in donor vesicles). In endosomes and in vitro, syntaxin 7, Vti1 and syntaxin 8 form a complex that is able to bind VAMP7. Antibodies to syntaxin 8 and a soluble recombinant VAMP7 fragment both inhibit in vitro reconstituted D. discoideum endosome fusion. The lysosomal content of syntaxin 7, Vti1, syntaxin 8 and VAMP7 is low compared with that in endosomes, implying a highly active recycling or retention mechanism. A likely model is that VAMP7 is a v-SNARE present on vesicles carrying lysosomal enzymes, and that the syntaxin 7-Vti1-syntaxin 8 t-SNARE complex is associated with incoming endocytic material.

Full Text

The Full Text of this article is available as a PDF (384.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adessi C., Chapel A., Vinçon M., Rabilloud T., Klein G., Satre M., Garin J. Identification of major proteins associated with Dictyostelium discoideum endocytic vesicles. J Cell Sci. 1995 Oct;108(Pt 10):3331–3337. doi: 10.1242/jcs.108.10.3331. [DOI] [PubMed] [Google Scholar]
  2. Advani R. J., Yang B., Prekeris R., Lee K. C., Klumperman J., Scheller R. H. VAMP-7 mediates vesicular transport from endosomes to lysosomes. J Cell Biol. 1999 Aug 23;146(4):765–776. doi: 10.1083/jcb.146.4.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aguado-Velasco C., Bretscher M. S. Circulation of the plasma membrane in Dictyostelium. Mol Biol Cell. 1999 Dec;10(12):4419–4427. doi: 10.1091/mbc.10.12.4419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Antonin W., Holroyd C., Fasshauer D., Pabst S., Von Mollard G. F., Jahn R. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. EMBO J. 2000 Dec 1;19(23):6453–6464. doi: 10.1093/emboj/19.23.6453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Antonin Wolfram, Fasshauer Dirk, Becker Stefan, Jahn Reinhard, Schneider Thomas R. Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat Struct Biol. 2002 Feb;9(2):107–111. doi: 10.1038/nsb746. [DOI] [PubMed] [Google Scholar]
  6. Antonny B., Schekman R. ER export: public transportation by the COPII coach. Curr Opin Cell Biol. 2001 Aug;13(4):438–443. doi: 10.1016/s0955-0674(00)00234-9. [DOI] [PubMed] [Google Scholar]
  7. Aubry L., Klein G., Martiel J. L., Satre M. Kinetics of endosomal pH evolution in Dictyostelium discoideum amoebae. Study by fluorescence spectroscopy. J Cell Sci. 1993 Jul;105(Pt 3):861–866. doi: 10.1242/jcs.105.3.861. [DOI] [PubMed] [Google Scholar]
  8. Balch W. E., Rothman J. E. Characterization of protein transport between successive compartments of the Golgi apparatus: asymmetric properties of donor and acceptor activities in a cell-free system. Arch Biochem Biophys. 1985 Jul;240(1):413–425. doi: 10.1016/0003-9861(85)90046-3. [DOI] [PubMed] [Google Scholar]
  9. Beinert H. Micro methods for the quantitative determination of iron and copper in biological material. Methods Enzymol. 1978;54:435–445. doi: 10.1016/s0076-6879(78)54027-5. [DOI] [PubMed] [Google Scholar]
  10. Bogdanovic A., Bruckert F., Morio T., Satre M. A syntaxin 7 homologue is present in Dictyostelium discoideum endosomes and controls their homotypic fusion. J Biol Chem. 2000 Nov 24;275(47):36691–36697. doi: 10.1074/jbc.M006710200. [DOI] [PubMed] [Google Scholar]
  11. Campbell J. L., Schekman R. Selective packaging of cargo molecules into endoplasmic reticulum-derived COPII vesicles. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):837–842. doi: 10.1073/pnas.94.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Coco S., Raposo G., Martinez S., Fontaine J. J., Takamori S., Zahraoui A., Jahn R., Matteoli M., Louvard D., Galli T. Subcellular localization of tetanus neurotoxin-insensitive vesicle-associated membrane protein (VAMP)/VAMP7 in neuronal cells: evidence for a novel membrane compartment. J Neurosci. 1999 Nov 15;19(22):9803–9812. doi: 10.1523/JNEUROSCI.19-22-09803.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fasshauer D., Sutton R. B., Brunger A. T., Jahn R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15781–15786. doi: 10.1073/pnas.95.26.15781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fukuda R., McNew J. A., Weber T., Parlati F., Engel T., Nickel W., Rothman J. E., Söllner T. H. Functional architecture of an intracellular membrane t-SNARE. Nature. 2000 Sep 14;407(6801):198–202. doi: 10.1038/35025084. [DOI] [PubMed] [Google Scholar]
  15. Galli T., Zahraoui A., Vaidyanathan V. V., Raposo G., Tian J. M., Karin M., Niemann H., Louvard D. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mol Biol Cell. 1998 Jun;9(6):1437–1448. doi: 10.1091/mbc.9.6.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gu F., Gruenberg J. Biogenesis of transport intermediates in the endocytic pathway. FEBS Lett. 1999 Jun 4;452(1-2):61–66. doi: 10.1016/s0014-5793(99)00561-x. [DOI] [PubMed] [Google Scholar]
  17. Hacker U., Albrecht R., Maniak M. Fluid-phase uptake by macropinocytosis in Dictyostelium. J Cell Sci. 1997 Jan;110(Pt 2):105–112. doi: 10.1242/jcs.110.2.105. [DOI] [PubMed] [Google Scholar]
  18. Hibi T., Hirashima N., Nakanishi M. Rat basophilic leukemia cells express syntaxin-3 and VAMP-7 in granule membranes. Biochem Biophys Res Commun. 2000 Apr 29;271(1):36–41. doi: 10.1006/bbrc.2000.2591. [DOI] [PubMed] [Google Scholar]
  19. Jenne N., Rauchenberger R., Hacker U., Kast T., Maniak M. Targeted gene disruption reveals a role for vacuolin B in the late endocytic pathway and exocytosis. J Cell Sci. 1998 Jan;111(Pt 1):61–70. doi: 10.1242/jcs.111.1.61. [DOI] [PubMed] [Google Scholar]
  20. Journet A., Chapel A., Jehan S., Adessi C., Freeze H., Klein G., Garin J. Characterization of Dictyostelium discoideum cathepsin D. J Cell Sci. 1999 Nov;112(Pt 21):3833–3843. doi: 10.1242/jcs.112.21.3833. [DOI] [PubMed] [Google Scholar]
  21. Kasai K., Akagawa K. Roles of the cytoplasmic and transmembrane domains of syntaxins in intracellular localization and trafficking. J Cell Sci. 2001 Sep;114(Pt 17):3115–3124. doi: 10.1242/jcs.114.17.3115. [DOI] [PubMed] [Google Scholar]
  22. Lafont F., Verkade P., Galli T., Wimmer C., Louvard D., Simons K. Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3734–3738. doi: 10.1073/pnas.96.7.3734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Laurent O., Bruckert F., Adessi C., Satre M. In vitro reconstituted Dictyostelium discoideum early endosome fusion is regulated by Rab7 but proceeds in the absence of ATP-Mg2+ from the bulk solution. J Biol Chem. 1998 Jan 9;273(2):793–799. doi: 10.1074/jbc.273.2.793. [DOI] [PubMed] [Google Scholar]
  24. Lenhard J. M., Mayorga L., Stahl P. D. Characterization of endosome-endosome fusion in a cell-free system using Dictyostelium discoideum. J Biol Chem. 1992 Jan 25;267(3):1896–1903. [PubMed] [Google Scholar]
  25. Lupashin V. V., Waters M. G. t-SNARE activation through transient interaction with a rab-like guanosine triphosphatase. Science. 1997 May 23;276(5316):1255–1258. doi: 10.1126/science.276.5316.1255. [DOI] [PubMed] [Google Scholar]
  26. Maniak M., Rauchenberger R., Albrecht R., Murphy J., Gerisch G. Coronin involved in phagocytosis: dynamics of particle-induced relocalization visualized by a green fluorescent protein Tag. Cell. 1995 Dec 15;83(6):915–924. doi: 10.1016/0092-8674(95)90207-4. [DOI] [PubMed] [Google Scholar]
  27. Martinez-Arca S., Alberts P., Zahraoui A., Louvard D., Galli T. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J Cell Biol. 2000 May 15;149(4):889–900. doi: 10.1083/jcb.149.4.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mullock B. M., Smith C. W., Ihrke G., Bright N. A., Lindsay M., Parkinson E. J., Brooks D. A., Parton R. G., James D. E., Luzio J. P. Syntaxin 7 is localized to late endosome compartments, associates with Vamp 8, and Is required for late endosome-lysosome fusion. Mol Biol Cell. 2000 Sep;11(9):3137–3153. doi: 10.1091/mbc.11.9.3137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Padh H., Ha J., Lavasa M., Steck T. L. A post-lysosomal compartment in Dictyostelium discoideum. J Biol Chem. 1993 Mar 25;268(9):6742–6747. [PubMed] [Google Scholar]
  30. Parlati F., McNew J. A., Fukuda R., Miller R., Söllner T. H., Rothman J. E. Topological restriction of SNARE-dependent membrane fusion. Nature. 2000 Sep 14;407(6801):194–198. doi: 10.1038/35025076. [DOI] [PubMed] [Google Scholar]
  31. Pfeffer S. R. Transport-vesicle targeting: tethers before SNAREs. Nat Cell Biol. 1999 May;1(1):E17–E22. doi: 10.1038/8967. [DOI] [PubMed] [Google Scholar]
  32. Rauchenberger R., Hacker U., Murphy J., Niewöhner J., Maniak M. Coronin and vacuolin identify consecutive stages of a late, actin-coated endocytic compartment in Dictyostelium. Curr Biol. 1997 Mar 1;7(3):215–218. doi: 10.1016/s0960-9822(97)70093-9. [DOI] [PubMed] [Google Scholar]
  33. Rodriguez-Paris J. M., Nolta K. V., Steck T. L. Characterization of lysosomes isolated from Dictyostelium discoideum by magnetic fractionation. J Biol Chem. 1993 Apr 25;268(12):9110–9116. [PubMed] [Google Scholar]
  34. Rothman J. E. Mechanisms of intracellular protein transport. Nature. 1994 Nov 3;372(6501):55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
  35. Rupper A., Cardelli J. Regulation of phagocytosis and endo-phagosomal trafficking pathways in Dictyostelium discoideum. Biochim Biophys Acta. 2001 Mar 15;1525(3):205–216. doi: 10.1016/s0304-4165(01)00106-4. [DOI] [PubMed] [Google Scholar]
  36. Shaw J. D., Cummings K. B., Huyer G., Michaelis S., Wendland B. Yeast as a model system for studying endocytosis. Exp Cell Res. 2001 Nov 15;271(1):1–9. doi: 10.1006/excr.2001.5373. [DOI] [PubMed] [Google Scholar]
  37. Souza G. M., Mehta D. P., Lammertz M., Rodriguez-Paris J., Wu R., Cardelli J. A., Freeze H. H. Dictyostelium lysosomal proteins with different sugar modifications sort to functionally distinct compartments. J Cell Sci. 1997 Sep;110(Pt 18):2239–2248. doi: 10.1242/jcs.110.18.2239. [DOI] [PubMed] [Google Scholar]
  38. Söllner T., Bennett M. K., Whiteheart S. W., Scheller R. H., Rothman J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993 Nov 5;75(3):409–418. doi: 10.1016/0092-8674(93)90376-2. [DOI] [PubMed] [Google Scholar]
  39. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
  40. Søgaard M., Tani K., Ye R. R., Geromanos S., Tempst P., Kirchhausen T., Rothman J. E., Söllner T. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell. 1994 Sep 23;78(6):937–948. doi: 10.1016/0092-8674(94)90270-4. [DOI] [PubMed] [Google Scholar]
  41. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wade N., Bryant N. J., Connolly L. M., Simpson R. J., Luzio J. P., Piper R. C., James D. E. Syntaxin 7 complexes with mouse Vps10p tail interactor 1b, syntaxin 6, vesicle-associated membrane protein (VAMP)8, and VAMP7 in b16 melanoma cells. J Biol Chem. 2001 Mar 1;276(23):19820–19827. doi: 10.1074/jbc.M010838200. [DOI] [PubMed] [Google Scholar]
  43. Ward D. M., Pevsner J., Scullion M. A., Vaughn M., Kaplan J. Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages. Mol Biol Cell. 2000 Jul;11(7):2327–2333. doi: 10.1091/mbc.11.7.2327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Watts D. J., Ashworth J. M. Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J. 1970 Sep;119(2):171–174. doi: 10.1042/bj1190171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Weidenhaupt M., Bruckert F., Louwagie M., Garin J., Satre M. Functional and molecular identification of novel members of the ubiquitous membrane fusion proteins alpha- and gamma-SNAP (soluble N-ethylmaleimide-sensitive factor-attachment proteins) families in Dictyostelium discoideum. Eur J Biochem. 2000 Apr;267(7):2062–2070. doi: 10.1046/j.1432-1327.2000.01212.x. [DOI] [PubMed] [Google Scholar]
  46. Weidenhaupt M., Bruckert F., Satre M. Identification of the Dictyostelium discoideum homolog of the N-ethylmaleimide-sensitive fusion protein. Gene. 1998 Jan 19;207(1):53–60. doi: 10.1016/s0378-1119(97)00604-5. [DOI] [PubMed] [Google Scholar]
  47. Weimbs T., Mostov K., Low S. H., Hofmann K. A model for structural similarity between different SNARE complexes based on sequence relationships. Trends Cell Biol. 1998 Jul;8(7):260–262. doi: 10.1016/s0962-8924(98)01285-9. [DOI] [PubMed] [Google Scholar]
  48. Wong S. H., Zhang T., Xu Y., Subramaniam V. N., Griffiths G., Hong W. Endobrevin, a novel synaptobrevin/VAMP-like protein preferentially associated with the early endosome. Mol Biol Cell. 1998 Jun;9(6):1549–1563. doi: 10.1091/mbc.9.6.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES