Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Dec 1;368(Pt 2):447–459. doi: 10.1042/BJ20020273

A lysophosphatidic acid analogue is revealed as a potent inhibitor of phosphatidylcholine synthesis, inducing apoptosis.

Geneviéve Gueguen 1, Virginie Granci 1, Pierre Rogalle 1, Fabienne Briand-Mésange 1, Michéle Wilson 1, Alain Klaébé 1, François Tercé 1, Hugues Chap 1, Jean-Pierre Salles 1, Marie-Françoise Simon 1, Frédérique Gaits 1
PMCID: PMC1223009  PMID: 12197836

Abstract

A previous study demonstrated that cross-desensitization experiments performed with the lysophosphatidic acid (LPA) analogues (R)- and (S)-N-palmitoyl-norleucinol 1-phosphate (PNPAs) inhibited LPA-induced platelet aggregation without any stereospecificity. Here we report opposite biological effects of the two enantiomers on mitogenesis of IMR-90 fibroblasts in relation to their respective metabolism. (R)PNPA was proliferative, while (S)PNPA induced apoptosis by specifically inhibiting phosphatidylcholine biosynthesis at the last step of the CDP-choline pathway controlled by cholinephosphotransferase. This effect was not direct but required dephosphorylation of PNPAs by ecto-lipid phosphate phosphatase before cellular uptake of the generated N-palmitoyl-norleucinols (PNOHs). Inhibition of cholinephosphotransferase by the derivative (S)PNOH was confirmed by an in vitro assay. (S)PNPA proapoptotic effects led us to clarify the mechanism linking cholinephosphotransferase inhibition to apoptosis. Three proapoptotic responses were observed: the activation of caspase-3, the production of ceramides from newly synthesized pools (as demonstrated by the inhibitor Fumonisin B1) and finally the activation of stress-activated protein kinase, p38 and c-Jun N-terminal kinases 1/2, as a result of ceramide increase. Thus our data demonstrate that synthetic analogues of LPA might display stereospecific effects leading to apoptosis independently of classical LPA-activated pathways.

Full Text

The Full Text of this article is available as a PDF (449.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An S. Molecular identification and characterization of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate. Ann N Y Acad Sci. 2000 Apr;905:25–33. doi: 10.1111/j.1749-6632.2000.tb06535.x. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Bittman R., Swords B., Liliom K., Tigyi G. Inhibitors of lipid phosphatidate receptors: N-palmitoyl-serine and N-palmitoyl-tyrosine phosphoric acids. J Lipid Res. 1996 Feb;37(2):391–398. [PubMed] [Google Scholar]
  4. Boggs K. P., Rock C. O., Jackowski S. Lysophosphatidylcholine attenuates the cytotoxic effects of the antineoplastic phospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3- phosphocholine. J Biol Chem. 1995 May 12;270(19):11612–11618. doi: 10.1074/jbc.270.19.11612. [DOI] [PubMed] [Google Scholar]
  5. Brindley D. N., Waggoner D. W. Mammalian lipid phosphate phosphohydrolases. J Biol Chem. 1998 Sep 18;273(38):24281–24284. doi: 10.1074/jbc.273.38.24281. [DOI] [PubMed] [Google Scholar]
  6. Brindley D. N., Waggoner D. W. Phosphatidate phosphohydrolase and signal transduction. Chem Phys Lipids. 1996 May 24;80(1-2):45–57. doi: 10.1016/0009-3084(96)02545-5. [DOI] [PubMed] [Google Scholar]
  7. Bünemann M., Liliom K., Brandts B. K., Pott L., Tseng J. L., Desiderio D. M., Sun G., Miller D., Tigyi G. A novel membrane receptor with high affinity for lysosphingomyelin and sphingosine 1-phosphate in atrial myocytes. EMBO J. 1996 Oct 15;15(20):5527–5534. [PMC free article] [PubMed] [Google Scholar]
  8. Cryns V., Yuan J. Proteases to die for. Genes Dev. 1998 Jun 1;12(11):1551–1570. doi: 10.1101/gad.12.11.1551. [DOI] [PubMed] [Google Scholar]
  9. Cui Z., Houweling M., Chen M. H., Record M., Chap H., Vance D. E., Tercé F. A genetic defect in phosphatidylcholine biosynthesis triggers apoptosis in Chinese hamster ovary cells. J Biol Chem. 1996 Jun 21;271(25):14668–14671. doi: 10.1074/jbc.271.25.14668. [DOI] [PubMed] [Google Scholar]
  10. Dutton M. F. Fumonisins, mycotoxins of increasing importance: their nature and their effects. Pharmacol Ther. 1996;70(2):137–161. doi: 10.1016/0163-7258(96)00006-x. [DOI] [PubMed] [Google Scholar]
  11. Fang X., Gaudette D., Furui T., Mao M., Estrella V., Eder A., Pustilnik T., Sasagawa T., Lapushin R., Yu S. Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer. Ann N Y Acad Sci. 2000 Apr;905:188–208. doi: 10.1111/j.1749-6632.2000.tb06550.x. [DOI] [PubMed] [Google Scholar]
  12. Gaits F., Salles J. P., Chap H. Dual effect of lysophosphatidic acid on proliferation of glomerular mesangial cells. Kidney Int. 1997 Apr;51(4):1022–1027. doi: 10.1038/ki.1997.143. [DOI] [PubMed] [Google Scholar]
  13. Gueguen G., Gaigé B., Grévy J. M., Rogalle P., Bellan J., Wilson M., Klaébé A., Pont F., Simon M. F., Chap H. Structure-activity analysis of the effects of lysophosphatidic acid on platelet aggregation. Biochemistry. 1999 Jun 29;38(26):8440–8450. doi: 10.1021/bi9816756. [DOI] [PubMed] [Google Scholar]
  14. Gómez-Muñoz A. Modulation of cell signalling by ceramides. Biochim Biophys Acta. 1998 Mar 6;1391(1):92–109. doi: 10.1016/s0005-2760(97)00201-4. [DOI] [PubMed] [Google Scholar]
  15. Hemrika W., Renirie R., Dekker H. L., Barnett P., Wever R. From phosphatases to vanadium peroxidases: a similar architecture of the active site. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2145–2149. doi: 10.1073/pnas.94.6.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holtsberg F. W., Steiner M. R., Bruce-Keller A. J., Keller J. N., Mattson M. P., Moyers J. C., Steiner S. M. Lysophosphatidic acid and apoptosis of nerve growth factor-differentiated PC12 cells. J Neurosci Res. 1998 Sep 15;53(6):685–696. doi: 10.1002/(SICI)1097-4547(19980915)53:6<685::AID-JNR7>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  17. Holtsberg F. W., Steiner M. R., Keller J. N., Mark R. J., Mattson M. P., Steiner S. M. Lysophosphatidic acid induces necrosis and apoptosis in hippocampal neurons. J Neurochem. 1998 Jan;70(1):66–76. doi: 10.1046/j.1471-4159.1998.70010066.x. [DOI] [PubMed] [Google Scholar]
  18. Hooks S. B., Ragan S. P., Hopper D. W., Hönemann C. W., Durieux M. E., Macdonald T. L., Lynch K. R. Characterization of a receptor subtype-selective lysophosphatidic acid mimetic. Mol Pharmacol. 1998 Feb;53(2):188–194. doi: 10.1124/mol.53.2.188. [DOI] [PubMed] [Google Scholar]
  19. Hooks S. B., Santos W. L., Im D. S., Heise C. E., Macdonald T. L., Lynch K. R. Lysophosphatidic acid-induced mitogenesis is regulated by lipid phosphate phosphatases and is Edg-receptor independent. J Biol Chem. 2000 Oct 19;276(7):4611–4621. doi: 10.1074/jbc.M007782200. [DOI] [PubMed] [Google Scholar]
  20. Hopper D. W., Ragan S. P., Hooks S. B., Lynch K. R., Macdonald T. L. Structure--activity relationships of lysophosphatidic acid: conformationally restricted backbone mimetics. J Med Chem. 1999 Mar 25;42(6):963–970. doi: 10.1021/jm970809v. [DOI] [PubMed] [Google Scholar]
  21. Hsu S. C., Gavrilin M. A., Tsai M. H., Han J., Lai M. Z. p38 mitogen-activated protein kinase is involved in Fas ligand expression. J Biol Chem. 1999 Sep 3;274(36):25769–25776. doi: 10.1074/jbc.274.36.25769. [DOI] [PubMed] [Google Scholar]
  22. Imagawa W., Bandyopadhyay G. K., Nandi S. Analysis of the proliferative response to lysophosphatidic acid in primary cultures of mammary epithelium: differences between normal and tumor cells. Exp Cell Res. 1995 Jan;216(1):178–186. doi: 10.1006/excr.1995.1022. [DOI] [PubMed] [Google Scholar]
  23. Jalink K., Hengeveld T., Mulder S., Postma F. R., Simon M. F., Chap H., van der Marel G. A., van Boom J. H., van Blitterswijk W. J., Moolenaar W. H. Lysophosphatidic acid-induced Ca2+ mobilization in human A431 cells: structure-activity analysis. Biochem J. 1995 Apr 15;307(Pt 2):609–616. doi: 10.1042/bj3070609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jalink K., Hordijk P. L., Moolenaar W. H. Growth factor-like effects of lysophosphatidic acid, a novel lipid mediator. Biochim Biophys Acta. 1994 Dec 30;1198(2-3):185–196. doi: 10.1016/0304-419x(94)90013-2. [DOI] [PubMed] [Google Scholar]
  25. Jasinska R., Zhang Q. X., Pilquil C., Singh I., Xu J., Dewald J., Dillon D. A., Berthiaume L. G., Carman G. M., Waggoner D. W. Lipid phosphate phosphohydrolase-1 degrades exogenous glycerolipid and sphingolipid phosphate esters. Biochem J. 1999 Jun 15;340(Pt 3):677–686. [PMC free article] [PubMed] [Google Scholar]
  26. Kaufmann-Kolle P., Drevs J., Berger M. R., Kötting J., Marschner N., Unger C., Eibl H. Pharmacokinetic behavior and antineoplastic activity of liposomal hexadecylphosphocholine. Cancer Chemother Pharmacol. 1994;34(5):393–398. doi: 10.1007/BF00685563. [DOI] [PubMed] [Google Scholar]
  27. Le-Niculescu H., Bonfoco E., Kasuya Y., Claret F. X., Green D. R., Karin M. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol. 1999 Jan;19(1):751–763. doi: 10.1128/mcb.19.1.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Liliom K., Bittman R., Swords B., Tigyi G. N-palmitoyl-serine and N-palmitoyl-tyrosine phosphoric acids are selective competitive antagonists of the lysophosphatidic acid receptors. Mol Pharmacol. 1996 Sep;50(3):616–623. [PubMed] [Google Scholar]
  29. Matsuda S., Moriguchi T., Koyasu S., Nishida E. T lymphocyte activation signals for interleukin-2 production involve activation of MKK6-p38 and MKK7-SAPK/JNK signaling pathways sensitive to cyclosporin A. J Biol Chem. 1998 May 15;273(20):12378–12382. doi: 10.1074/jbc.273.20.12378. [DOI] [PubMed] [Google Scholar]
  30. Miquel K., Pradines A., Tercé F., Selmi S., Favre G. Competitive inhibition of choline phosphotransferase by geranylgeraniol and farnesol inhibits phosphatidylcholine synthesis and induces apoptosis in human lung adenocarcinoma A549 cells. J Biol Chem. 1998 Oct 2;273(40):26179–26186. doi: 10.1074/jbc.273.40.26179. [DOI] [PubMed] [Google Scholar]
  31. Moolenaar W. H. Development of our current understanding of bioactive lysophospholipids. Ann N Y Acad Sci. 2000 Apr;905:1–10. doi: 10.1111/j.1749-6632.2000.tb06532.x. [DOI] [PubMed] [Google Scholar]
  32. Moolenaar W. H., Kranenburg O., Postma F. R., Zondag G. C. Lysophosphatidic acid: G-protein signalling and cellular responses. Curr Opin Cell Biol. 1997 Apr;9(2):168–173. doi: 10.1016/s0955-0674(97)80059-2. [DOI] [PubMed] [Google Scholar]
  33. Pearson G., Robinson F., Beers Gibson T., Xu B. E., Karandikar M., Berman K., Cobb M. H. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001 Apr;22(2):153–183. doi: 10.1210/edrv.22.2.0428. [DOI] [PubMed] [Google Scholar]
  34. Piazza G. A., Ritter J. L., Baracka C. A. Lysophosphatidic acid induction of transforming growth factors alpha and beta: modulation of proliferation and differentiation in cultured human keratinocytes and mouse skin. Exp Cell Res. 1995 Jan;216(1):51–64. doi: 10.1006/excr.1995.1007. [DOI] [PubMed] [Google Scholar]
  35. Pilquil C., Singh I., Zhang Q. X., Ling Z. C., Buri K., Stromberg L. M., Dewald J., Brindley D. N. Lipid phosphate phosphatase-1 dephosphorylates exogenous lysophosphatidate and thereby attenuates its effects on cell signalling. Prostaglandins Other Lipid Mediat. 2001 Apr;64(1-4):83–92. doi: 10.1016/s0090-6980(01)00101-0. [DOI] [PubMed] [Google Scholar]
  36. Pouysségur J. Signal transduction. An arresting start for MAPK. Science. 2000 Nov 24;290(5496):1515–1518. doi: 10.1126/science.290.5496.1515. [DOI] [PubMed] [Google Scholar]
  37. Preiss J., Loomis C. R., Bishop W. R., Stein R., Niedel J. E., Bell R. M. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem. 1986 Jul 5;261(19):8597–8600. [PubMed] [Google Scholar]
  38. Santos W. L., Rossi J. A., Boggs S. D., MacDonald T. L. The molecular pharmacology of lysophosphatidate signaling. Ann N Y Acad Sci. 2000 Apr;905:232–241. doi: 10.1111/j.1749-6632.2000.tb06553.x. [DOI] [PubMed] [Google Scholar]
  39. Tigyi G., Dyer D. L., Miledi R. Lysophosphatidic acid possesses dual action in cell proliferation. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1908–1912. doi: 10.1073/pnas.91.5.1908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Unger C., Eibl H. Hexadecylphosphocholine: preclinical and the first clinical results of a new antitumor drug. Lipids. 1991 Dec;26(12):1412–1417. doi: 10.1007/BF02536578. [DOI] [PubMed] [Google Scholar]
  41. Unger C., Fleer E. A., Kötting J., Neumüller W., Eibl H. Antitumoral activity of alkylphosphocholines and analogues in human leukemia cell lines. Prog Exp Tumor Res. 1992;34:25–32. doi: 10.1159/000420829. [DOI] [PubMed] [Google Scholar]
  42. Unger C., Sindermann H., Peukert M., Hilgard P., Engel J., Eibl H. Hexadecylphosphocholine in the topical treatment of skin metastases in breast cancer patients. Prog Exp Tumor Res. 1992;34:153–159. doi: 10.1159/000420840. [DOI] [PubMed] [Google Scholar]
  43. Voziyan P. A., Goldner C. M., Melnykovych G. Farnesol inhibits phosphatidylcholine biosynthesis in cultured cells by decreasing cholinephosphotransferase activity. Biochem J. 1993 Nov 1;295(Pt 3):757–762. doi: 10.1042/bj2950757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. WEISS S. B., SMITH S. W., KENNEDY E. P. The enzymatic formation of lecithin from cytidine diphosphate choline and D-1,2-diglyceride. J Biol Chem. 1958 Mar;231(1):53–64. [PubMed] [Google Scholar]
  45. Wieder T., Orfanos C. E., Geilen C. C. Induction of ceramide-mediated apoptosis by the anticancer phospholipid analog, hexadecylphosphocholine. J Biol Chem. 1998 May 1;273(18):11025–11031. doi: 10.1074/jbc.273.18.11025. [DOI] [PubMed] [Google Scholar]
  46. Xia Z., Dickens M., Raingeaud J., Davis R. J., Greenberg M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995 Nov 24;270(5240):1326–1331. doi: 10.1126/science.270.5240.1326. [DOI] [PubMed] [Google Scholar]
  47. Xu J., Love L. M., Singh I., Zhang Q. X., Dewald J., Wang D. A., Fischer D. J., Tigyi G., Berthiaume L. G., Waggoner D. W. Lipid phosphate phosphatase-1 and Ca2+ control lysophosphatidate signaling through EDG-2 receptors. J Biol Chem. 2000 Sep 8;275(36):27520–27530. doi: 10.1074/jbc.M003211200. [DOI] [PubMed] [Google Scholar]
  48. Xu J., Zhang Q. X., Pilquil C., Berthiaume L. G., Waggoner D. W., Brindley D. N. Lipid phosphate phosphatase-1 in the regulation of lysophosphatidate signaling. Ann N Y Acad Sci. 2000 Apr;905:81–90. doi: 10.1111/j.1749-6632.2000.tb06540.x. [DOI] [PubMed] [Google Scholar]
  49. Xu Y., Zhu K., Hong G., Wu W., Baudhuin L. M., Xiao Y., Damron D. S. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol. 2000 May;2(5):261–267. doi: 10.1038/35010529. [DOI] [PubMed] [Google Scholar]
  50. van Corven E. J., van Rijswijk A., Jalink K., van der Bend R. L., van Blitterswijk W. J., Moolenaar W. H. Mitogenic action of lysophosphatidic acid and phosphatidic acid on fibroblasts. Dependence on acyl-chain length and inhibition by suramin. Biochem J. 1992 Jan 1;281(Pt 1):163–169. doi: 10.1042/bj2810163. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES