Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 1;369(Pt 1):103–115. doi: 10.1042/BJ20020928

The TATA-containing core promoter of the type II collagen gene (COL2A1) is the target of interferon-gamma-mediated inhibition in human chondrocytes: requirement for Stat1 alpha, Jak1 and Jak2.

Makoto Osaki 1, Lujian Tan 1, Bob K Choy 1, Yasuhiro Yoshida 1, Kathryn S E Cheah 1, Philip E Auron 1, Mary B Goldring 1
PMCID: PMC1223055  PMID: 12223098

Abstract

Interferon-gamma (IFN-gamma) inhibits the synthesis of the cartilage-specific extracellular matrix protein type II collagen, and suppresses the expression of the type II collagen gene ( COL2A1 ) at the transcriptional level. To further examine this mechanism, the responses of COL2A1 regulatory sequences to IFN-gamma and the role of components of the Janus kinase/signal transducer and activators of transcription (JAK/STAT) pathway were examined in the immortalized human chondrocyte cell line, C-28/I2. IFN-gamma inhibited the mRNA levels of COL2A1 and aggrecan, but not Sox9, L-Sox5 and Sox6, all of which were expressed by these cells as markers of the differentiated phenotype. IFN-gamma suppressed the expression of luciferase reporter constructs containing sequences of the COL2A1 promoter spanning -6368 to +125 bp in the absence and presence of the intronic enhancer and stimulated activity of the gamma-interferon-activated site (GAS) luciferase reporter vector, associated with induction of Stat1 alpha-binding activity in nuclear extracts. These responses to IFN-gamma were blocked by overexpression of the JAK inhibitor, JAK-binding protein (JAB), or reversed by dominant-negative Stat1 alpha Y701F containing a mutation at Tyr-701, the JAK phosphorylation site. IFN-gamma had no effect on COL2A1 promoter expression in Jak1 (U4A)-, Jak2 (gamma 2A)- and Stat1 alpha (U3A)-deficient cell lines. In the U3A cell line, the response to IFN-gamma was rescued by overexpression of Stat1 alpha, but not by either Stat1 alpha Y701F or Stat1 beta. Functional analysis using deletion constructs showed that the IFN-gamma response was retained in the COL2A1 core promoter region spanning -45 to +11 bp, containing the TATA-box and GC-rich sequences but no Stat1-binding elements. Inhibition of COL2A1 promoter activity by IFN-gamma persisted in the presence of multiple deletions within the -45/+11 bp region. Our results indicate that repression of COL2A1 gene transcription by IFN-gamma requires Jak1, Jak2 and Stat1 alpha and suggest that this response involves indirect interaction of activated Stat1 alpha with the general transcriptional machinery that drives constitutive COL2A1 expression.

Full Text

The Full Text of this article is available as a PDF (288.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amento E. P., Bhan A. K., McCullagh K. G., Krane S. M. Influences of gamma interferon on synovial fibroblast-like cells. Ia induction and inhibition of collagen synthesis. J Clin Invest. 1985 Aug;76(2):837–848. doi: 10.1172/JCI112041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bromberg J. F., Fan Z., Brown C., Mendelsohn J., Darnell J. E., Jr Epidermal growth factor-induced growth inhibition requires Stat1 activation. Cell Growth Differ. 1998 Jul;9(7):505–512. [PubMed] [Google Scholar]
  3. Chatterjee-Kishore M., van den Akker F., Stark G. R. Association of STATs with relatives and friends. Trends Cell Biol. 2000 Mar;10(3):106–111. doi: 10.1016/s0962-8924(99)01709-2. [DOI] [PubMed] [Google Scholar]
  4. Cheah K. S., Levy A., Trainor P. A., Wai A. W., Kuffner T., So C. L., Leung K. K., Lovell-Badge R. H., Tam P. P. Human COL2A1-directed SV40 T antigen expression in transgenic and chimeric mice results in abnormal skeletal development. J Cell Biol. 1995 Jan;128(1-2):223–237. doi: 10.1083/jcb.128.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Der S. D., Zhou A., Williams B. R., Silverman R. H. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15623–15628. doi: 10.1073/pnas.95.26.15623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dharmavaram R. M., Liu G., Mowers S. D., Jimenez S. A. Detection and characterization of Sp1 binding activity in human chondrocytes and its alterations during chondrocyte dedifferentiation. J Biol Chem. 1997 Oct 24;272(43):26918–26925. doi: 10.1074/jbc.272.43.26918. [DOI] [PubMed] [Google Scholar]
  7. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dodge G. R., Diaz A., Sanz-Rodriguez C., Reginato A. M., Jimenez S. A. Effects of interferon-gamma and tumor necrosis factor alpha on the expression of the genes encoding aggrecan, biglycan, and decorin core proteins in cultured human chondrocytes. Arthritis Rheum. 1998 Feb;41(2):274–283. doi: 10.1002/1529-0131(199802)41:2<274::AID-ART11>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  9. Endo T. A., Masuhara M., Yokouchi M., Suzuki R., Sakamoto H., Mitsui K., Matsumoto A., Tanimura S., Ohtsubo M., Misawa H. A new protein containing an SH2 domain that inhibits JAK kinases. Nature. 1997 Jun 26;387(6636):921–924. doi: 10.1038/43213. [DOI] [PubMed] [Google Scholar]
  10. Ghayor C., Chadjichristos C., Herrouin J. F., Ala-Kokko L., Suske G., Pujol J. P., Galera P. Sp3 represses the Sp1-mediated transactivation of the human COL2A1 gene in primary and de-differentiated chondrocytes. J Biol Chem. 2001 Jul 10;276(40):36881–36895. doi: 10.1074/jbc.M105083200. [DOI] [PubMed] [Google Scholar]
  11. Ghayor C., Herrouin J. F., Chadjichristos C., Ala-Kokko L., Takigawa M., Pujol J. P., Galéra P. Regulation of human COL2A1 gene expression in chondrocytes. Identification of C-Krox-responsive elements and modulation by phenotype alteration. J Biol Chem. 2000 Sep 1;275(35):27421–27438. doi: 10.1074/jbc.M002139200. [DOI] [PubMed] [Google Scholar]
  12. Ghosh A. K., Yuan W., Mori Y., Chen Sj, Varga J. Antagonistic regulation of type I collagen gene expression by interferon-gamma and transforming growth factor-beta. Integration at the level of p300/CBP transcriptional coactivators. J Biol Chem. 2000 Dec 29;276(14):11041–11048. doi: 10.1074/jbc.M004709200. [DOI] [PubMed] [Google Scholar]
  13. Goldring M. B., Birkhead J. R., Suen L. F., Yamin R., Mizuno S., Glowacki J., Arbiser J. L., Apperley J. F. Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. J Clin Invest. 1994 Dec;94(6):2307–2316. doi: 10.1172/JCI117595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldring M. B., Birkhead J., Sandell L. J., Kimura T., Krane S. M. Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest. 1988 Dec;82(6):2026–2037. doi: 10.1172/JCI113823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldring M. B., Fukuo K., Birkhead J. R., Dudek E., Sandell L. J. Transcriptional suppression by interleukin-1 and interferon-gamma of type II collagen gene expression in human chondrocytes. J Cell Biochem. 1994 Jan;54(1):85–99. doi: 10.1002/jcb.240540110. [DOI] [PubMed] [Google Scholar]
  16. Goldring M. B., Krane S. M. Modulation by recombinant interleukin 1 of synthesis of types I and III collagens and associated procollagen mRNA levels in cultured human cells. J Biol Chem. 1987 Dec 5;262(34):16724–16729. [PubMed] [Google Scholar]
  17. Goldring M. B., Sandell L. J., Stephenson M. L., Krane S. M. Immune interferon suppresses levels of procollagen mRNA and type II collagen synthesis in cultured human articular and costal chondrocytes. J Biol Chem. 1986 Jul 5;261(19):9049–9055. [PubMed] [Google Scholar]
  18. Goldring M. B. The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models. Connect Tissue Res. 1999;40(1):1–11. doi: 10.3109/03008209909005273. [DOI] [PubMed] [Google Scholar]
  19. Higashi K., Kouba D. J., Song Y. J., Uitto J., Mauviel A. A proximal element within the human alpha 2(I) collagen (COL1A2) promoter, distinct from the tumor necrosis factor-alpha response element, mediates transcriptional repression by interferon-gamma. Matrix Biol. 1998 Mar;16(8):447–456. doi: 10.1016/s0945-053x(98)90016-6. [DOI] [PubMed] [Google Scholar]
  20. Horvai A. E., Xu L., Korzus E., Brard G., Kalafus D., Mullen T. M., Rose D. W., Rosenfeld M. G., Glass C. K. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1074–1079. doi: 10.1073/pnas.94.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ihle J. N. The Stat family in cytokine signaling. Curr Opin Cell Biol. 2001 Apr;13(2):211–217. doi: 10.1016/s0955-0674(00)00199-x. [DOI] [PubMed] [Google Scholar]
  22. Lefebvre V., Li P., de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 1998 Oct 1;17(19):5718–5733. doi: 10.1093/emboj/17.19.5718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lefebvre V., Peeters-Joris C., Vaes G. Modulation by interleukin 1 and tumor necrosis factor alpha of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. Biochim Biophys Acta. 1990 May 22;1052(3):366–378. doi: 10.1016/0167-4889(90)90145-4. [DOI] [PubMed] [Google Scholar]
  24. Leung K. K., Ng L. J., Ho K. K., Tam P. P., Cheah K. S. Different cis-regulatory DNA elements mediate developmental stage- and tissue-specific expression of the human COL2A1 gene in transgenic mice. J Cell Biol. 1998 Jun 15;141(6):1291–1300. doi: 10.1083/jcb.141.6.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Loeser R. F., Sadiev S., Tan L., Goldring M. B. Integrin expression by primary and immortalized human chondrocytes: evidence of a differential role for alpha1beta1 and alpha2beta1 integrins in mediating chondrocyte adhesion to types II and VI collagen. Osteoarthritis Cartilage. 2000 Mar;8(2):96–105. doi: 10.1053/joca.1999.0277. [DOI] [PubMed] [Google Scholar]
  26. Marshall O. J., Harley V. R. Molecular mechanisms of SOX9 action. Mol Genet Metab. 2000 Nov;71(3):455–462. doi: 10.1006/mgme.2000.3081. [DOI] [PubMed] [Google Scholar]
  27. Murray D., Precht P., Balakir R., Horton W. E., Jr The transcription factor deltaEF1 is inversely expressed with type II collagen mRNA and can repress Col2a1 promoter activity in transfected chondrocytes. J Biol Chem. 2000 Feb 4;275(5):3610–3618. doi: 10.1074/jbc.275.5.3610. [DOI] [PubMed] [Google Scholar]
  28. Müller M., Laxton C., Briscoe J., Schindler C., Improta T., Darnell J. E., Jr, Stark G. R., Kerr I. M. Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-alpha and -gamma signal transduction pathways. EMBO J. 1993 Nov;12(11):4221–4228. doi: 10.1002/j.1460-2075.1993.tb06106.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nakajima K., Yamanaka Y., Nakae K., Kojima H., Ichiba M., Kiuchi N., Kitaoka T., Fukada T., Hibi M., Hirano T. A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J. 1996 Jul 15;15(14):3651–3658. [PMC free article] [PubMed] [Google Scholar]
  30. Niwa H., Yamamura K., Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991 Dec 15;108(2):193–199. doi: 10.1016/0378-1119(91)90434-d. [DOI] [PubMed] [Google Scholar]
  31. Pellacani A., Chin M. T., Wiesel P., Ibanez M., Patel A., Yet S. F., Hsieh C. M., Paulauskis J. D., Reeves R., Lee M. E. Induction of high mobility group-I(Y) protein by endotoxin and interleukin-1beta in vascular smooth muscle cells. Role in activation of inducible nitric oxide synthase. J Biol Chem. 1999 Jan 15;274(3):1525–1532. doi: 10.1074/jbc.274.3.1525. [DOI] [PubMed] [Google Scholar]
  32. Ramana C. V., Grammatikakis N., Chernov M., Nguyen H., Goh K. C., Williams B. R., Stark G. R. Regulation of c-myc expression by IFN-gamma through Stat1-dependent and -independent pathways. EMBO J. 2000 Jan 17;19(2):263–272. doi: 10.1093/emboj/19.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reginato A. M., Sanz-Rodriguez C., Diaz A., Dharmavaram R. M., Jimenez S. A. Transcriptional modulation of cartilage-specific collagen gene expression by interferon gamma and tumour necrosis factor alpha in cultured human chondrocytes. Biochem J. 1993 Sep 15;294(Pt 3):761–769. doi: 10.1042/bj2940761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Riquet F. B., Lai W. F., Birkhead J. R., Suen L. F., Karsenty G., Goldring M. B. Suppression of type I collagen gene expression by prostaglandins in fibroblasts is mediated at the transcriptional level. Mol Med. 2000 Aug;6(8):705–719. [PMC free article] [PubMed] [Google Scholar]
  35. Riquet F. B., Tan L., Choy B. K., Osaki M., Karsenty G., Osborne T. F., Auron P. E., Goldring M. B. YY1 is a positive regulator of transcription of the Col1a1 gene. J Biol Chem. 2001 Aug 20;276(42):38665–38672. doi: 10.1074/jbc.M009881200. [DOI] [PubMed] [Google Scholar]
  36. Robbins J. R., Thomas B., Tan L., Choy B., Arbiser J. L., Berenbaum F., Goldring M. B. Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1beta. Arthritis Rheum. 2000 Oct;43(10):2189–2201. doi: 10.1002/1529-0131(200010)43:10<2189::AID-ANR6>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  37. Ryan M. C., Sieraski M., Sandell L. J. The human type II procollagen gene: identification of an additional protein-coding domain and location of potential regulatory sequences in the promoter and first intron. Genomics. 1990 Sep;8(1):41–48. doi: 10.1016/0888-7543(90)90224-i. [DOI] [PubMed] [Google Scholar]
  38. Sandell L. J. Genes and gene regulation of extracellular matrix proteins: an introduction. Connect Tissue Res. 1996;35(1-4):1–6. doi: 10.3109/03008209609029168. [DOI] [PubMed] [Google Scholar]
  39. Sengupta Pritam K., Fargo John, Smith Barbara D. The RFX family interacts at the collagen (COL1A2) start site and represses transcription. J Biol Chem. 2002 May 1;277(28):24926–24937. doi: 10.1074/jbc.M111712200. [DOI] [PubMed] [Google Scholar]
  40. Sharma B., Iozzo R. V. Transcriptional silencing of perlecan gene expression by interferon-gamma. J Biol Chem. 1998 Feb 20;273(8):4642–4646. doi: 10.1074/jbc.273.8.4642. [DOI] [PubMed] [Google Scholar]
  41. Sibinga N. E., Wang H., Perrella M. A., Endege W. O., Patterson C., Yoshizumi M., Haber E., Lee M. E. Interferon-gamma-mediated inhibition of cyclin A gene transcription is independent of individual cis-acting elements in the cyclin A promoter. J Biol Chem. 1999 Apr 23;274(17):12139–12146. doi: 10.1074/jbc.274.17.12139. [DOI] [PubMed] [Google Scholar]
  42. Tamai K., Li K., Silos S., Rudnicka L., Hashimoto T., Nishikawa T., Uitto J. Interferon-gamma-mediated inactivation of transcription of the 230-kDa bullous pemphigoid antigen gene (BPAG1) provides novel insight into keratinocyte differentiation. J Biol Chem. 1995 Jan 6;270(1):392–396. doi: 10.1074/jbc.270.1.392. [DOI] [PubMed] [Google Scholar]
  43. Vikkula M., Metsäranta M., Syvänen A. C., Ala-Kokko L., Vuorio E., Peltonen L. Structural analysis of the regulatory elements of the type-II procollagen gene. Conservation of promoter and first intron sequences between human and mouse. Biochem J. 1992 Jul 1;285(Pt 1):287–294. doi: 10.1042/bj2850287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wen Z., Zhong Z., Darnell J. E., Jr Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995 Jul 28;82(2):241–250. doi: 10.1016/0092-8674(95)90311-9. [DOI] [PubMed] [Google Scholar]
  45. Yasukawa H., Misawa H., Sakamoto H., Masuhara M., Sasaki A., Wakioka T., Ohtsuka S., Imaizumi T., Matsuda T., Ihle J. N. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J. 1999 Mar 1;18(5):1309–1320. doi: 10.1093/emboj/18.5.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yuan W., Yufit T., Li L., Mori Y., Chen S. J., Varga J. Negative modulation of alpha1(I) procollagen gene expression in human skin fibroblasts: transcriptional inhibition by interferon-gamma. J Cell Physiol. 1999 Apr;179(1):97–108. doi: 10.1002/(SICI)1097-4652(199904)179:1<97::AID-JCP12>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  47. Zhang J. J., Vinkemeier U., Gu W., Chakravarti D., Horvath C. M., Darnell J. E., Jr Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15092–15096. doi: 10.1073/pnas.93.26.15092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhang J. J., Zhao Y., Chait B. T., Lathem W. W., Ritzi M., Knippers R., Darnell J. E., Jr Ser727-dependent recruitment of MCM5 by Stat1alpha in IFN-gamma-induced transcriptional activation. EMBO J. 1998 Dec 1;17(23):6963–6971. doi: 10.1093/emboj/17.23.6963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhu X. S., Ting J. P. A 36-amino-acid region of CIITA is an effective inhibitor of CBP: novel mechanism of gamma interferon-mediated suppression of collagen alpha(2)(I) and other promoters. Mol Cell Biol. 2001 Oct;21(20):7078–7088. doi: 10.1128/MCB.21.20.7078-7088.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES