Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 1;369(Pt 1):1–15. doi: 10.1042/BJ20021469

Protein kinase CK2: structure, regulation and role in cellular decisions of life and death.

David W Litchfield 1
PMCID: PMC1223072  PMID: 12396231

Abstract

Protein kinase CK2 ('casein kinase II') has traditionally been classified as a messenger-independent protein serine/threonine kinase that is typically found in tetrameric complexes consisting of two catalytic (alpha and/or alpha') subunits and two regulatory beta subunits. Accumulated biochemical and genetic evidence indicates that CK2 has a vast array of candidate physiological targets and participates in a complex series of cellular functions, including the maintenance of cell viability. This review summarizes current knowledge of the structural and enzymic features of CK2, and discusses advances that challenge traditional views of this enzyme. For example, the recent demonstrations that individual CK2 subunits exist outside tetrameric complexes and that CK2 displays dual-specificity kinase activity raises new prospects for the precise elucidation of its regulation and cellular functions. This review also discusses a number of the mechanisms that contribute to the regulation of CK2 in cells, and will highlight emerging insights into the role of CK2 in cellular decisions of life and death. In this latter respect, recent evidence suggests that CK2 can exert an anti-apoptotic role by protecting regulatory proteins from caspase-mediated degradation. The mechanistic basis of the observation that CK2 is essential for viability may reside in part in this ability to protect cellular proteins from caspase action. Furthermore, this anti-apoptotic function of CK2 may contribute to its ability to participate in transformation and tumorigenesis.

Full Text

The Full Text of this article is available as a PDF (399.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman P., Glover C. V., Osheroff N. Stimulation of casein kinase II by epidermal growth factor: relationship between the physiological activity of the kinase and the phosphorylation state of its beta subunit. Proc Natl Acad Sci U S A. 1990 Jan;87(2):821–825. doi: 10.1073/pnas.87.2.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ackermann K., Waxmann A., Glover C. V., Pyerin W. Genes targeted by protein kinase CK2: a genome-wide expression array analysis in yeast. Mol Cell Biochem. 2001 Nov;227(1-2):59–66. [PubMed] [Google Scholar]
  3. Agostinis P., Goris J., Pinna L. A., Merlevede W. Regulation of casein kinase 2 by phosphorylation/dephosphorylation. Biochem J. 1987 Dec 15;248(3):785–789. doi: 10.1042/bj2480785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ahmed K. Nuclear matrix and protein kinase CK2 signaling. Crit Rev Eukaryot Gene Expr. 1999;9(3-4):329–336. doi: 10.1615/critreveukargeneexpr.v9.i3-4.170. [DOI] [PubMed] [Google Scholar]
  5. Ahmed Khalil, Gerber Delphine A., Cochet Claude. Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol. 2002 May;12(5):226–230. doi: 10.1016/s0962-8924(02)02279-1. [DOI] [PubMed] [Google Scholar]
  6. Ahn N. G., Resing K. A. Toward the phosphoproteome. Nat Biotechnol. 2001 Apr;19(4):317–318. doi: 10.1038/86687. [DOI] [PubMed] [Google Scholar]
  7. Allende C. C., Allende J. E. Promiscuous subunit interactions: a possible mechanism for the regulation of protein kinase CK2. J Cell Biochem Suppl. 1998;30-31:129–136. [PubMed] [Google Scholar]
  8. Allende J. E., Allende C. C. Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J. 1995 Mar;9(5):313–323. doi: 10.1096/fasebj.9.5.7896000. [DOI] [PubMed] [Google Scholar]
  9. Appel K., Wagner P., Boldyreff B., Issinger O. G., Montenarh M. Mapping of the interaction sites of the growth suppressor protein p53 with the regulatory beta-subunit of protein kinase CK2. Oncogene. 1995 Nov 16;11(10):1971–1978. [PubMed] [Google Scholar]
  10. Battistutta R., De Moliner E., Sarno S., Zanotti G., Pinna L. A. Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci. 2001 Nov;10(11):2200–2206. doi: 10.1110/ps.19601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Birnbaum M. J., Glover V. C. The phosphotransferase activity of casein kinase II is required for its physiological function in vivo. Biochem Biophys Res Commun. 1991 Dec 16;181(2):524–528. doi: 10.1016/0006-291x(91)91220-7. [DOI] [PubMed] [Google Scholar]
  13. Blanquet P. R. Casein kinase 2 as a potentially important enzyme in the nervous system. Prog Neurobiol. 2000 Feb;60(3):211–246. doi: 10.1016/s0301-0082(99)00026-x. [DOI] [PubMed] [Google Scholar]
  14. Blaydes J. P., Hupp T. R. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene. 1998 Aug 27;17(8):1045–1052. doi: 10.1038/sj.onc.1202014. [DOI] [PubMed] [Google Scholar]
  15. Block K., Boyer T. G., Yew P. R. Phosphorylation of the human ubiquitin-conjugating enzyme, CDC34, by casein kinase 2. J Biol Chem. 2001 Sep 6;276(44):41049–41058. doi: 10.1074/jbc.M106453200. [DOI] [PubMed] [Google Scholar]
  16. Bodenbach L., Fauss J., Robitzki A., Krehan A., Lorenz P., Lozeman F. J., Pyerin W. Recombinant human casein kinase II. A study with the complete set of subunits (alpha, alpha' and beta), site-directed autophosphorylation mutants and a bicistronically expressed holoenzyme. Eur J Biochem. 1994 Feb 15;220(1):263–273. doi: 10.1111/j.1432-1033.1994.tb18622.x. [DOI] [PubMed] [Google Scholar]
  17. Bojanowski K., Filhol O., Cochet C., Chambaz E. M., Larsen A. K. DNA topoisomerase II and casein kinase II associate in a molecular complex that is catalytically active. J Biol Chem. 1993 Oct 25;268(30):22920–22926. [PubMed] [Google Scholar]
  18. Boldyreff B., Issinger O. G. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit. FEBS Lett. 1997 Feb 17;403(2):197–199. doi: 10.1016/s0014-5793(97)00010-0. [DOI] [PubMed] [Google Scholar]
  19. Boldyreff B., James P., Staudenmann W., Issinger O. G. Ser2 is the autophosphorylation site in the beta subunit from bicistronically expressed human casein kinase-2 and from native rat liver casein kinase-2 beta. Eur J Biochem. 1993 Dec 1;218(2):515–521. doi: 10.1111/j.1432-1033.1993.tb18404.x. [DOI] [PubMed] [Google Scholar]
  20. Boldyreff B., Meggio F., Pinna L. A., Issinger O. G. Efficient autophosphorylation and phosphorylation of the beta-subunit by casein kinase-2 require the integrity of an acidic cluster 50 residues downstream from the phosphoacceptor site. J Biol Chem. 1994 Feb 18;269(7):4827–4831. [PubMed] [Google Scholar]
  21. Boldyreff B., Mietens U., Issinger O. G. Structure of protein kinase CK2: dimerization of the human beta-subunit. FEBS Lett. 1996 Jan 29;379(2):153–156. doi: 10.1016/0014-5793(95)01497-7. [DOI] [PubMed] [Google Scholar]
  22. Boldyreff B., Piontek K., Schmidt-Spaniol I., Issinger O. G. The beta subunit of casein kinase II: cloning of cDNAs from murine and porcine origin and expression of the porcine sequence as a fusion protein. Biochim Biophys Acta. 1991 Mar 26;1088(3):439–441. doi: 10.1016/0167-4781(91)90140-h. [DOI] [PubMed] [Google Scholar]
  23. Bonnet H., Filhol O., Truchet I., Brethenou P., Cochet C., Amalric F., Bouche G. Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem. 1996 Oct 4;271(40):24781–24787. doi: 10.1074/jbc.271.40.24781. [DOI] [PubMed] [Google Scholar]
  24. Bosc D. G., Graham K. C., Saulnier R. B., Zhang C., Prober D., Gietz R. D., Litchfield D. W. Identification and characterization of CKIP-1, a novel pleckstrin homology domain-containing protein that interacts with protein kinase CK2. J Biol Chem. 2000 May 12;275(19):14295–14306. doi: 10.1074/jbc.275.19.14295. [DOI] [PubMed] [Google Scholar]
  25. Bosc D. G., Lüscher B., Litchfield D. W. Expression and regulation of protein kinase CK2 during the cell cycle. Mol Cell Biochem. 1999 Jan;191(1-2):213–222. [PubMed] [Google Scholar]
  26. Bosc D. G., Slominski E., Sichler C., Litchfield D. W. Phosphorylation of casein kinase II by p34cdc2. Identification of phosphorylation sites using phosphorylation site mutants in vitro. J Biol Chem. 1995 Oct 27;270(43):25872–25878. doi: 10.1074/jbc.270.43.25872. [DOI] [PubMed] [Google Scholar]
  27. Bousset K., Henriksson M., Lüscher-Firzlaff J. M., Litchfield D. W., Lüscher B. Identification of casein kinase II phosphorylation sites in Max: effects on DNA-binding kinetics of Max homo- and Myc/Max heterodimers. Oncogene. 1993 Dec;8(12):3211–3220. [PubMed] [Google Scholar]
  28. Canton D. A., Zhang C., Litchfield D. W. Assembly of protein kinase CK2: investigation of complex formation between catalytic and regulatory subunits using a zinc-finger-deficient mutant of CK2beta. Biochem J. 2001 Aug 15;358(Pt 1):87–94. doi: 10.1042/0264-6021:3580087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Cardenas M. E., Dang Q., Glover C. V., Gasser S. M. Casein kinase II phosphorylates the eukaryote-specific C-terminal domain of topoisomerase II in vivo. EMBO J. 1992 May;11(5):1785–1796. doi: 10.1002/j.1460-2075.1992.tb05230.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Carroll D., Marshak D. R. Serum-stimulated cell growth causes oscillations in casein kinase II activity. J Biol Chem. 1989 May 5;264(13):7345–7348. [PubMed] [Google Scholar]
  31. Channavajhala Padmalatha, Seldin David C. Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene. 2002 Aug 8;21(34):5280–5288. doi: 10.1038/sj.onc.1205640. [DOI] [PubMed] [Google Scholar]
  32. Chantalat L., Leroy D., Filhol O., Nueda A., Benitez M. J., Chambaz E. M., Cochet C., Dideberg O. Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc finger-mediated dimerization. EMBO J. 1999 Jun 1;18(11):2930–2940. doi: 10.1093/emboj/18.11.2930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Chardot T., Shen H., Meunier J. C. Dual specificity of casein kinase II from the yeast Yarrowia lipolytica. C R Acad Sci III. 1995 Sep;318(9):937–942. [PubMed] [Google Scholar]
  34. Chen M., Cooper J. A. The beta subunit of CKII negatively regulates Xenopus oocyte maturation. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9136–9140. doi: 10.1073/pnas.94.17.9136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Chen M., Li D., Krebs E. G., Cooper J. A. The casein kinase II beta subunit binds to Mos and inhibits Mos activity. Mol Cell Biol. 1997 Apr;17(4):1904–1912. doi: 10.1128/mcb.17.4.1904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Cobb M. H., Goldsmith E. J. How MAP kinases are regulated. J Biol Chem. 1995 Jun 23;270(25):14843–14846. doi: 10.1074/jbc.270.25.14843. [DOI] [PubMed] [Google Scholar]
  37. Cochet C., Chambaz E. M. Oligomeric structure and catalytic activity of G type casein kinase. Isolation of the two subunits and renaturation experiments. J Biol Chem. 1983 Feb 10;258(3):1403–1406. [PubMed] [Google Scholar]
  38. Cohen P. The regulation of protein function by multisite phosphorylation--a 25 year update. Trends Biochem Sci. 2000 Dec;25(12):596–601. doi: 10.1016/s0968-0004(00)01712-6. [DOI] [PubMed] [Google Scholar]
  39. Coqueret O., Martin N., Bérubé G., Rabbat M., Litchfield D. W., Nepveu A. DNA binding by cut homeodomain proteins is down-modulated by casein kinase II. J Biol Chem. 1998 Jan 30;273(5):2561–2566. doi: 10.1074/jbc.273.5.2561. [DOI] [PubMed] [Google Scholar]
  40. Daum J. R., Gorbsky G. J. Casein kinase II catalyzes a mitotic phosphorylation on threonine 1342 of human DNA topoisomerase IIalpha, which is recognized by the 3F3/2 phosphoepitope antibody. J Biol Chem. 1998 Nov 13;273(46):30622–30629. doi: 10.1074/jbc.273.46.30622. [DOI] [PubMed] [Google Scholar]
  41. Davies S. P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95–105. doi: 10.1042/0264-6021:3510095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Davis Alan T., Wang Huamin, Zhang Ping, Ahmed Khalil. Heat shock mediated modulation of protein kinase CK2 in the nuclear matrix. J Cell Biochem. 2002;85(3):583–591. doi: 10.1002/jcb.10158. [DOI] [PubMed] [Google Scholar]
  43. Daya-Makin M., Sanghera J. S., Mogentale T. L., Lipp M., Parchomchuk J., Hogg J. C., Pelech S. L. Activation of a tumor-associated protein kinase (p40TAK) and casein kinase 2 in human squamous cell carcinomas and adenocarcinomas of the lung. Cancer Res. 1994 Apr 15;54(8):2262–2268. [PubMed] [Google Scholar]
  44. Desagher S., Osen-Sand A., Montessuit S., Magnenat E., Vilbois F., Hochmann A., Journot L., Antonsson B., Martinou J. C. Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell. 2001 Sep;8(3):601–611. doi: 10.1016/s1097-2765(01)00335-5. [DOI] [PubMed] [Google Scholar]
  45. Dittié A. S., Thomas L., Thomas G., Tooze S. A. Interaction of furin in immature secretory granules from neuroendocrine cells with the AP-1 adaptor complex is modulated by casein kinase II phosphorylation. EMBO J. 1997 Aug 15;16(16):4859–4870. doi: 10.1093/emboj/16.16.4859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Donella-Deana A., Cesaro L., Sarno S., Brunati A. M., Ruzzene M., Pinna L. A. Autocatalytic tyrosine-phosphorylation of protein kinase CK2 alpha and alpha' subunits: implication of Tyr182. Biochem J. 2001 Jul 15;357(Pt 2):563–567. doi: 10.1042/0264-6021:3570563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Escargueil A. E., Plisov S. Y., Filhol O., Cochet C., Larsen A. K. Mitotic phosphorylation of DNA topoisomerase II alpha by protein kinase CK2 creates the MPM-2 phosphoepitope on Ser-1469. J Biol Chem. 2000 Nov 3;275(44):34710–34718. doi: 10.1074/jbc.M005179200. [DOI] [PubMed] [Google Scholar]
  48. Eyers P. A., van den IJssel P., Quinlan R. A., Goedert M., Cohen P. Use of a drug-resistant mutant of stress-activated protein kinase 2a/p38 to validate the in vivo specificity of SB 203580. FEBS Lett. 1999 May 21;451(2):191–196. doi: 10.1016/s0014-5793(99)00552-9. [DOI] [PubMed] [Google Scholar]
  49. Faust M., Montenarh M. Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res. 2000 Sep;301(3):329–340. doi: 10.1007/s004410000256. [DOI] [PubMed] [Google Scholar]
  50. Faust M., Schuster N., Montenarh M. Specific binding of protein kinase CK2 catalytic subunits to tubulin. FEBS Lett. 1999 Nov 26;462(1-2):51–56. doi: 10.1016/s0014-5793(99)01492-1. [DOI] [PubMed] [Google Scholar]
  51. Faust R. A., Gapany M., Tristani P., Davis A., Adams G. L., Ahmed K. Elevated protein kinase CK2 activity in chromatin of head and neck tumors: association with malignant transformation. Cancer Lett. 1996 Mar 19;101(1):31–35. doi: 10.1016/0304-3835(96)04110-9. [DOI] [PubMed] [Google Scholar]
  52. Faust R. A., Tawfic S., Davis A. T., Bubash L. A., Ahmed K. Antisense oligonucleotides against protein kinase CK2-alpha inhibit growth of squamous cell carcinoma of the head and neck in vitro. Head Neck. 2000 Jul;22(4):341–346. doi: 10.1002/1097-0347(200007)22:4<341::aid-hed5>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  53. Filhol O., Baudier J., Delphin C., Loue-Mackenbach P., Chambaz E. M., Cochet C. Casein kinase II and the tumor suppressor protein P53 associate in a molecular complex that is negatively regulated upon P53 phosphorylation. J Biol Chem. 1992 Oct 15;267(29):20577–20583. [PubMed] [Google Scholar]
  54. Ford H. L., Landesman-Bollag E., Dacwag C. S., Stukenberg P. T., Pardee A. B., Seldin D. C. Cell cycle-regulated phosphorylation of the human SIX1 homeodomain protein. J Biol Chem. 2000 Jul 21;275(29):22245–22254. doi: 10.1074/jbc.M002446200. [DOI] [PubMed] [Google Scholar]
  55. Fraser A. G., Kamath R. S., Zipperlen P., Martinez-Campos M., Sohrmann M., Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000 Nov 16;408(6810):325–330. doi: 10.1038/35042517. [DOI] [PubMed] [Google Scholar]
  56. Gavin Anne-Claude, Bösche Markus, Krause Roland, Grandi Paola, Marzioch Martina, Bauer Andreas, Schultz Jörg, Rick Jens M., Michon Anne-Marie, Cruciat Cristina-Maria. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002 Jan 10;415(6868):141–147. doi: 10.1038/415141a. [DOI] [PubMed] [Google Scholar]
  57. Gerber D. A., Souquere-Besse S., Puvion F., Dubois M. F., Bensaude O., Cochet C. Heat-induced relocalization of protein kinase CK2. Implication of CK2 in the context of cellular stress. J Biol Chem. 2000 Aug 4;275(31):23919–23926. doi: 10.1074/jbc.M002697200. [DOI] [PubMed] [Google Scholar]
  58. Ghavidel A., Schultz M. C. TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery. Cell. 2001 Sep 7;106(5):575–584. doi: 10.1016/s0092-8674(01)00473-1. [DOI] [PubMed] [Google Scholar]
  59. Gietz R. D., Graham K. C., Litchfield D. W. Interactions between the subunits of casein kinase II. J Biol Chem. 1995 Jun 2;270(22):13017–13021. doi: 10.1074/jbc.270.22.13017. [DOI] [PubMed] [Google Scholar]
  60. Glotzer M., Murray A. W., Kirschner M. W. Cyclin is degraded by the ubiquitin pathway. Nature. 1991 Jan 10;349(6305):132–138. doi: 10.1038/349132a0. [DOI] [PubMed] [Google Scholar]
  61. Glover C. V., 3rd On the physiological role of casein kinase II in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1998;59:95–133. doi: 10.1016/s0079-6603(08)61030-2. [DOI] [PubMed] [Google Scholar]
  62. Glover C. V. A filamentous form of Drosophila casein kinase II. J Biol Chem. 1986 Oct 25;261(30):14349–14354. [PubMed] [Google Scholar]
  63. Graham K. C., Litchfield D. W. The regulatory beta subunit of protein kinase CK2 mediates formation of tetrameric CK2 complexes. J Biol Chem. 2000 Feb 18;275(7):5003–5010. doi: 10.1074/jbc.275.7.5003. [DOI] [PubMed] [Google Scholar]
  64. Grankowski N., Boldyreff B., Issinger O. G. Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria. Eur J Biochem. 1991 May 23;198(1):25–30. doi: 10.1111/j.1432-1033.1991.tb15982.x. [DOI] [PubMed] [Google Scholar]
  65. Guerra B., Issinger O. G. Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis. 1999 Feb;20(2):391–408. doi: 10.1002/(SICI)1522-2683(19990201)20:2<391::AID-ELPS391>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  66. Guerra B., Siemer S., Boldyreff B., Issinger O. G. Protein kinase CK2: evidence for a protein kinase CK2beta subunit fraction, devoid of the catalytic CK2alpha subunit, in mouse brain and testicles. FEBS Lett. 1999 Dec 3;462(3):353–357. doi: 10.1016/s0014-5793(99)01553-7. [DOI] [PubMed] [Google Scholar]
  67. Guo C., Yu S., Davis A. T., Wang H., Green J. E., Ahmed K. A potential role of nuclear matrix-associated protein kinase CK2 in protection against drug-induced apoptosis in cancer cells. J Biol Chem. 2000 Nov 7;276(8):5992–5999. doi: 10.1074/jbc.M004862200. [DOI] [PubMed] [Google Scholar]
  68. Hagemann C., Kalmes A., Wixler V., Wixler L., Schuster T., Rapp U. R. The regulatory subunit of protein kinase CK2 is a specific A-Raf activator. FEBS Lett. 1997 Feb 17;403(2):200–202. doi: 10.1016/s0014-5793(97)00011-2. [DOI] [PubMed] [Google Scholar]
  69. Hanks S. K., Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995 May;9(8):576–596. [PubMed] [Google Scholar]
  70. Hanna D. E., Rethinaswamy A., Glover C. V. Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J Biol Chem. 1995 Oct 27;270(43):25905–25914. doi: 10.1074/jbc.270.43.25905. [DOI] [PubMed] [Google Scholar]
  71. Heller-Harrison R. A., Meisner H., Czech M. P. Cloning and characterization of a cDNA encoding the beta subunit of human casein kinase II. Biochemistry. 1989 Nov 14;28(23):9053–9058. doi: 10.1021/bi00449a014. [DOI] [PubMed] [Google Scholar]
  72. Henriksson M., Lüscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res. 1996;68:109–182. doi: 10.1016/s0065-230x(08)60353-x. [DOI] [PubMed] [Google Scholar]
  73. Hershko A., Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479. doi: 10.1146/annurev.biochem.67.1.425. [DOI] [PubMed] [Google Scholar]
  74. Hilgard Philip, Huang Tianmin, Wolkoff Allan W., Stockert Richard J. Translated Alu sequence determines nuclear localization of a novel catalytic subunit of casein kinase 2. Am J Physiol Cell Physiol. 2002 Aug;283(2):C472–C483. doi: 10.1152/ajpcell.00070.2002. [DOI] [PubMed] [Google Scholar]
  75. Hinrichs M. V., Jedlicki A., Tellez R., Pongor S., Gatica M., Allende C. C., Allende J. E. Activity of recombinant alpha and beta subunits of casein kinase II from Xenopus laevis. Biochemistry. 1993 Jul 20;32(28):7310–7316. doi: 10.1021/bi00079a030. [DOI] [PubMed] [Google Scholar]
  76. Ho Yuen, Gruhler Albrecht, Heilbut Adrian, Bader Gary D., Moore Lynda, Adams Sally-Lin, Millar Anna, Taylor Paul, Bennett Keiryn, Boutilier Kelly. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002 Jan 10;415(6868):180–183. doi: 10.1038/415180a. [DOI] [PubMed] [Google Scholar]
  77. Hu E., Rubin C. S. Expression of wild-type and mutated forms of the catalytic (alpha) subunit of Caenorhabditis elegans casein kinase II in Escherichia coli. J Biol Chem. 1990 Nov 25;265(33):20609–20615. [PubMed] [Google Scholar]
  78. Hunter T., Plowman G. D. The protein kinases of budding yeast: six score and more. Trends Biochem Sci. 1997 Jan;22(1):18–22. doi: 10.1016/s0968-0004(96)10068-2. [DOI] [PubMed] [Google Scholar]
  79. Hunter T. Signaling--2000 and beyond. Cell. 2000 Jan 7;100(1):113–127. doi: 10.1016/s0092-8674(00)81688-8. [DOI] [PubMed] [Google Scholar]
  80. Hériché J. K., Chambaz E. M. Protein kinase CK2alpha is a target for the Abl and Bcr-Abl tyrosine kinases. Oncogene. 1998 Jul 9;17(1):13–18. doi: 10.1038/sj.onc.1201900. [DOI] [PubMed] [Google Scholar]
  81. Hériché J. K., Lebrin F., Rabilloud T., Leroy D., Chambaz E. M., Goldberg Y. Regulation of protein phosphatase 2A by direct interaction with casein kinase 2alpha. Science. 1997 May 9;276(5314):952–955. doi: 10.1126/science.276.5314.952. [DOI] [PubMed] [Google Scholar]
  82. Issinger O. G. Purification and properties of a ribosomal casein kinase from rabbit reticulocytes. Biochem J. 1977 Sep 1;165(3):511–518. doi: 10.1042/bj1650511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Jakobi R., Voss H., Pyerin W. Human phosvitin/casein kinase type II. Molecular cloning and sequencing of full-length cDNA encoding subunit beta. Eur J Biochem. 1989 Jul 15;183(1):227–233. doi: 10.1111/j.1432-1033.1989.tb14917.x. [DOI] [PubMed] [Google Scholar]
  84. Jedlicki A., Hinrichs M. V., Allende C. C., Allende J. E. The cDNAs coding for the alpha- and beta-subunits of Xenopus laevis casein kinase II. FEBS Lett. 1992 Feb 10;297(3):280–284. doi: 10.1016/0014-5793(92)80556-v. [DOI] [PubMed] [Google Scholar]
  85. Jensen H. H., Hjerrild M., Guerra B., Larsen M. R., Højrup P., Boldyreff B. Phosphorylation of the Fas associated factor FAF1 by protein kinase CK2 and identification of serines 289 and 291 as the in vitro phosphorylation sites. Int J Biochem Cell Biol. 2001 Jun;33(6):577–589. doi: 10.1016/s1357-2725(01)00039-5. [DOI] [PubMed] [Google Scholar]
  86. Kapoor M., Lozano G. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2834–2837. doi: 10.1073/pnas.95.6.2834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Keller D. M., Zeng X., Wang Y., Zhang Q. H., Kapoor M., Shu H., Goodman R., Lozano G., Zhao Y., Lu H. A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell. 2001 Feb;7(2):283–292. doi: 10.1016/s1097-2765(01)00176-9. [DOI] [PubMed] [Google Scholar]
  88. Kelliher M. A., Seldin D. C., Leder P. Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. EMBO J. 1996 Oct 1;15(19):5160–5166. [PMC free article] [PubMed] [Google Scholar]
  89. Kikkawa U., Mann S. K., Firtel R. A., Hunter T. Molecular cloning of casein kinase II alpha subunit from Dictyostelium discoideum and its expression in the life cycle. Mol Cell Biol. 1992 Dec;12(12):5711–5723. doi: 10.1128/mcb.12.12.5711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Kimura Y., Rutherford S. L., Miyata Y., Yahara I., Freeman B. C., Yue L., Morimoto R. I., Lindquist S. Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev. 1997 Jul 15;11(14):1775–1785. doi: 10.1101/gad.11.14.1775. [DOI] [PubMed] [Google Scholar]
  91. King R. W., Glotzer M., Kirschner M. W. Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol Biol Cell. 1996 Sep;7(9):1343–1357. doi: 10.1091/mbc.7.9.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Kobe B., Heierhorst J., Kemp B. E. Intrasteric regulation of protein kinases. Adv Second Messenger Phosphoprotein Res. 1997;31:29–40. doi: 10.1016/s1040-7952(97)80006-7. [DOI] [PubMed] [Google Scholar]
  93. Koskinen P. J., Västrik I., Mäkelä T. P., Eisenman R. N., Alitalo K. Max activity is affected by phosphorylation at two NH2-terminal sites. Cell Growth Differ. 1994 Mar;5(3):313–320. [PubMed] [Google Scholar]
  94. Krebs E. G. The growth of research on protein phosphorylation. Trends Biochem Sci. 1994 Nov;19(11):439–439. doi: 10.1016/0968-0004(94)90125-2. [DOI] [PubMed] [Google Scholar]
  95. Krek W., Maridor G., Nigg E. A. Casein kinase II is a predominantly nuclear enzyme. J Cell Biol. 1992 Jan;116(1):43–55. doi: 10.1083/jcb.116.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Krippner-Heidenreich A., Talanian R. V., Sekul R., Kraft R., Thole H., Ottleben H., Lüscher B. Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1. Biochem J. 2001 Sep 15;358(Pt 3):705–715. doi: 10.1042/0264-6021:3580705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Kusk M., Bendixen C., Dunø M., Westergaard O., Thomsen B. Genetic dissection of intersubunit contacts within human protein kinase CK2. J Mol Biol. 1995 Nov 10;253(5):703–711. doi: 10.1006/jmbi.1995.0584. [DOI] [PubMed] [Google Scholar]
  98. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  99. Landesman-Bollag E., Channavajhala P. L., Cardiff R. D., Seldin D. C. p53 deficiency and misexpression of protein kinase CK2alpha collaborate in the development of thymic lymphomas in mice. Oncogene. 1998 Jun 11;16(23):2965–2974. doi: 10.1038/sj.onc.1201854. [DOI] [PubMed] [Google Scholar]
  100. Landesman-Bollag E., Romieu-Mourez R., Song D. H., Sonenshein G. E., Cardiff R. D., Seldin D. C. Protein kinase CK2 in mammary gland tumorigenesis. Oncogene. 2001 May 31;20(25):3247–3257. doi: 10.1038/sj.onc.1204411. [DOI] [PubMed] [Google Scholar]
  101. Landesman-Bollag E., Song D. H., Romieu-Mourez R., Sussman D. J., Cardiff R. D., Sonenshein G. E., Seldin D. C. Protein kinase CK2: signaling and tumorigenesis in the mammary gland. Mol Cell Biochem. 2001 Nov;227(1-2):153–165. [PubMed] [Google Scholar]
  102. Lasa M., Marin O., Pinna L. A. Rat liver Golgi apparatus contains a protein kinase similar to the casein kinase of lactating mammary gland. Eur J Biochem. 1997 Feb 1;243(3):719–725. doi: 10.1111/j.1432-1033.1997.00719.x. [DOI] [PubMed] [Google Scholar]
  103. Lebrin F., Chambaz E. M., Bianchini L. A role for protein kinase CK2 in cell proliferation: evidence using a kinase-inactive mutant of CK2 catalytic subunit alpha. Oncogene. 2001 Apr 12;20(16):2010–2022. doi: 10.1038/sj.onc.1204307. [DOI] [PubMed] [Google Scholar]
  104. Leroy D., Heriché J. K., Filhol O., Chambaz E. M., Cochet C. Binding of polyamines to an autonomous domain of the regulatory subunit of protein kinase CK2 induces a conformational change in the holoenzyme. A proposed role for the kinase stimulation. J Biol Chem. 1997 Aug 15;272(33):20820–20827. doi: 10.1074/jbc.272.33.20820. [DOI] [PubMed] [Google Scholar]
  105. Leroy D., Schmid N., Behr J. P., Filhol O., Pares S., Garin J., Bourgarit J. J., Chambaz E. M., Cochet C. Direct identification of a polyamine binding domain on the regulatory subunit of the protein kinase casein kinase 2 by photoaffinity labeling. J Biol Chem. 1995 Jul 21;270(29):17400–17406. doi: 10.1074/jbc.270.29.17400. [DOI] [PubMed] [Google Scholar]
  106. Li D., Dobrowolska G., Aicher L. D., Chen M., Wright J. H., Drueckes P., Dunphy E. L., Munar E. S., Krebs E. G. Expression of the casein kinase 2 subunits in Chinese hamster ovary and 3T3 L1 cells provides information on the role of the enzyme in cell proliferation and the cell cycle. J Biol Chem. 1999 Nov 12;274(46):32988–32996. doi: 10.1074/jbc.274.46.32988. [DOI] [PubMed] [Google Scholar]
  107. Li D., Dobrowolska G., Krebs E. G. The physical association of casein kinase 2 with nucleolin. J Biol Chem. 1996 Jun 28;271(26):15662–15668. doi: 10.1074/jbc.271.26.15662. [DOI] [PubMed] [Google Scholar]
  108. Li D., Meier U. T., Dobrowolska G., Krebs E. G. Specific interaction between casein kinase 2 and the nucleolar protein Nopp140. J Biol Chem. 1997 Feb 7;272(6):3773–3779. doi: 10.1074/jbc.272.6.3773. [DOI] [PubMed] [Google Scholar]
  109. Li Pei-Feng, Li Jincheng, Müller Eva-Christina, Otto Albrecht, Dietz Rainer, von Harsdorf Rüdiger. Phosphorylation by protein kinase CK2: a signaling switch for the caspase-inhibiting protein ARC. Mol Cell. 2002 Aug;10(2):247–258. doi: 10.1016/s1097-2765(02)00600-7. [DOI] [PubMed] [Google Scholar]
  110. Lin A., Frost J., Deng T., Smeal T., al-Alawi N., Kikkawa U., Hunter T., Brenner D., Karin M. Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell. 1992 Sep 4;70(5):777–789. doi: 10.1016/0092-8674(92)90311-y. [DOI] [PubMed] [Google Scholar]
  111. Litchfield D. W., Bosc D. G., Canton D. A., Saulnier R. B., Vilk G., Zhang C. Functional specialization of CK2 isoforms and characterization of isoform-specific binding partners. Mol Cell Biochem. 2001 Nov;227(1-2):21–29. [PubMed] [Google Scholar]
  112. Litchfield D. W., Bosc D. G., Slominski E. The protein kinase from mitotic human cells that phosphorylates Ser-209 on the casein kinase II beta-subunit is p34cdc2. Biochim Biophys Acta. 1995 Oct 19;1269(1):69–78. doi: 10.1016/0167-4889(95)00100-7. [DOI] [PubMed] [Google Scholar]
  113. Litchfield D. W., Dobrowolska G., Krebs E. G. Regulation of casein kinase II by growth factors: a reevaluation. Cell Mol Biol Res. 1994;40(5-6):373–381. [PubMed] [Google Scholar]
  114. Litchfield D. W., Lozeman F. J., Cicirelli M. F., Harrylock M., Ericsson L. H., Piening C. J., Krebs E. G. Phosphorylation of the beta subunit of casein kinase II in human A431 cells. Identification of the autophosphorylation site and a site phosphorylated by p34cdc2. J Biol Chem. 1991 Oct 25;266(30):20380–20389. [PubMed] [Google Scholar]
  115. Litchfield D. W., Lozeman F. J., Piening C., Sommercorn J., Takio K., Walsh K. A., Krebs E. G. Subunit structure of casein kinase II from bovine testis. Demonstration that the alpha and alpha' subunits are distinct polypeptides. J Biol Chem. 1990 May 5;265(13):7638–7644. [PubMed] [Google Scholar]
  116. Litchfield D. W., Lüscher B. Casein kinase II in signal transduction and cell cycle regulation. Mol Cell Biochem. 1993 Nov;127-128:187–199. doi: 10.1007/BF01076770. [DOI] [PubMed] [Google Scholar]
  117. Litchfield D. W., Lüscher B., Lozeman F. J., Eisenman R. N., Krebs E. G. Phosphorylation of casein kinase II by p34cdc2 in vitro and at mitosis. J Biol Chem. 1992 Jul 15;267(20):13943–13951. [PubMed] [Google Scholar]
  118. Lodie T. A., Savedra R., Jr, Golenbock D. T., Van Beveren C. P., Maki R. A., Fenton M. J. Stimulation of macrophages by lipopolysaccharide alters the phosphorylation state, conformation, and function of PU.1 via activation of casein kinase II. J Immunol. 1997 Feb 15;158(4):1848–1856. [PubMed] [Google Scholar]
  119. Lorenz P., Pepperkok R., Ansorge W., Pyerin W. Cell biological studies with monoclonal and polyclonal antibodies against human casein kinase II subunit beta demonstrate participation of the kinase in mitogenic signaling. J Biol Chem. 1993 Feb 5;268(4):2733–2739. [PubMed] [Google Scholar]
  120. Lozeman F. J., Litchfield D. W., Piening C., Takio K., Walsh K. A., Krebs E. G. Isolation and characterization of human cDNA clones encoding the alpha and the alpha' subunits of casein kinase II. Biochemistry. 1990 Sep 11;29(36):8436–8447. doi: 10.1021/bi00488a034. [DOI] [PubMed] [Google Scholar]
  121. Lüscher B., Litchfield D. W. Biosynthesis of casein kinase II in lymphoid cell lines. Eur J Biochem. 1994 Mar 1;220(2):521–526. doi: 10.1111/j.1432-1033.1994.tb18651.x. [DOI] [PubMed] [Google Scholar]
  122. Maridor G., Park W., Krek W., Nigg E. A. Casein kinase II. cDNA sequences, developmental expression, and tissue distribution of mRNAs for alpha, alpha', and beta subunits of the chicken enzyme. J Biol Chem. 1991 Feb 5;266(4):2362–2368. [PubMed] [Google Scholar]
  123. Marin O., Meggio F., Pinna L. A. Structural features underlying the unusual mode of calmodulin phosphorylation by protein kinase CK2: A study with synthetic calmodulin fragments. Biochem Biophys Res Commun. 1999 Mar 16;256(2):442–446. doi: 10.1006/bbrc.1999.0348. [DOI] [PubMed] [Google Scholar]
  124. Marin O., Meggio F., Sarno S., Cesaro L., Pagano M. A., Pinna L. A. Tyrosine versus serine/threonine phosphorylation by protein kinase casein kinase-2. A study with peptide substrates derived from immunophilin Fpr3. J Biol Chem. 1999 Oct 8;274(41):29260–29265. doi: 10.1074/jbc.274.41.29260. [DOI] [PubMed] [Google Scholar]
  125. Marin O., Meggio F., Sarno S., Pinna L. A. Physical dissection of the structural elements responsible for regulatory properties and intersubunit interactions of protein kinase CK2 beta-subunit. Biochemistry. 1997 Jun 10;36(23):7192–7198. doi: 10.1021/bi962885q. [DOI] [PubMed] [Google Scholar]
  126. Martel V., Filhol O., Nueda A., Gerber D., Benitez M. J., Cochet C. Visualization and molecular analysis of nuclear import of protein kinase CK2 subunits in living cells. Mol Cell Biochem. 2001 Nov;227(1-2):81–90. [PubMed] [Google Scholar]
  127. Mauxion F., Le Borgne R., Munier-Lehmann H., Hoflack B. A casein kinase II phosphorylation site in the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor determines the high affinity interaction of the AP-1 Golgi assembly proteins with membranes. J Biol Chem. 1996 Jan 26;271(4):2171–2178. doi: 10.1074/jbc.271.4.2171. [DOI] [PubMed] [Google Scholar]
  128. Meek D. W., Simon S., Kikkawa U., Eckhart W. The p53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J. 1990 Oct;9(10):3253–3260. doi: 10.1002/j.1460-2075.1990.tb07524.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Meggio F., Boldyreff B., Issinger O. G., Pińna L. A. Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate. Biochemistry. 1994 Apr 12;33(14):4336–4342. doi: 10.1021/bi00180a030. [DOI] [PubMed] [Google Scholar]
  130. Meggio F., Boldyreff B., Marin O., Issinger O. G., Pinna L. A. Phosphorylation and activation of protein kinase CK2 by p34cdc2 are independent events. Eur J Biochem. 1995 Jun 15;230(3):1025–1031. doi: 10.1111/j.1432-1033.1995.tb20651.x. [DOI] [PubMed] [Google Scholar]
  131. Meggio F., Boldyreff B., Marin O., Pinna L. A., Issinger O. G. Role of the beta subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme. Eur J Biochem. 1992 Feb 15;204(1):293–297. doi: 10.1111/j.1432-1033.1992.tb16636.x. [DOI] [PubMed] [Google Scholar]
  132. Meggio F., Marin O., Pinna L. A. Substrate specificity of protein kinase CK2. Cell Mol Biol Res. 1994;40(5-6):401–409. [PubMed] [Google Scholar]
  133. Meggio F., Pinna L. A. Subunit structure and autophosphorylation mechanism of casein kinase-TS (type-2) from rat liver cytosol. Eur J Biochem. 1984 Dec 17;145(3):593–599. doi: 10.1111/j.1432-1033.1984.tb08598.x. [DOI] [PubMed] [Google Scholar]
  134. Messenger Moira M., Saulnier Ronald B., Gilchrist Andrew D., Diamond Phaedra, Gorbsky Gary J., Litchfield David W. Interactions between protein kinase CK2 and Pin1. Evidence for phosphorylation-dependent interactions. J Biol Chem. 2002 Apr 8;277(25):23054–23064. doi: 10.1074/jbc.M200111200. [DOI] [PubMed] [Google Scholar]
  135. Michel Jennifer J. Carlisle, Scott John D. AKAP mediated signal transduction. Annu Rev Pharmacol Toxicol. 2002;42:235–257. doi: 10.1146/annurev.pharmtox.42.083101.135801. [DOI] [PubMed] [Google Scholar]
  136. Miyata Y., Yahara I. Interaction between casein kinase II and the 90-kDa stress protein, HSP90. Biochemistry. 1995 Jun 27;34(25):8123–8129. doi: 10.1021/bi00025a019. [DOI] [PubMed] [Google Scholar]
  137. Mulner-Lorillon O., Cormier P., Labbé J. C., Dorée M., Poulhe R., Osborne H., Bellé R. M-phase-specific cdc2 protein kinase phosphorylates the beta subunit of casein kinase II and increases casein kinase II activity. Eur J Biochem. 1990 Oct 24;193(2):529–534. doi: 10.1111/j.1432-1033.1990.tb19368.x. [DOI] [PubMed] [Google Scholar]
  138. Münstermann U., Fritz G., Seitz G., Lu Y. P., Schneider H. R., Issinger O. G. Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue. Eur J Biochem. 1990 Apr 30;189(2):251–257. doi: 10.1111/j.1432-1033.1990.tb15484.x. [DOI] [PubMed] [Google Scholar]
  139. Nicholson D. W., Thornberry N. A. Caspases: killer proteases. Trends Biochem Sci. 1997 Aug;22(8):299–306. doi: 10.1016/s0968-0004(97)01085-2. [DOI] [PubMed] [Google Scholar]
  140. Niefind K., Guerra B., Ermakowa I., Issinger O. G. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J. 2001 Oct 1;20(19):5320–5331. doi: 10.1093/emboj/20.19.5320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Niefind K., Pütter M., Guerra B., Issinger O. G., Schomburg D. GTP plus water mimic ATP in the active site of protein kinase CK2. Nat Struct Biol. 1999 Dec;6(12):1100–1103. doi: 10.1038/70033. [DOI] [PubMed] [Google Scholar]
  142. O'Brien K. A., Lemke S. J., Cocke K. S., Rao R. N., Beckmann R. P. Casein kinase 2 binds to and phosphorylates BRCA1. Biochem Biophys Res Commun. 1999 Jul 14;260(3):658–664. doi: 10.1006/bbrc.1999.0892. [DOI] [PubMed] [Google Scholar]
  143. Oelgeschläger M., Krieg J., Lüscher-Firzlaff J. M., Lüscher B. Casein kinase II phosphorylation site mutations in c-Myb affect DNA binding and transcriptional cooperativity with NF-M. Mol Cell Biol. 1995 Nov;15(11):5966–5974. doi: 10.1128/mcb.15.11.5966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Orlandini M., Semplici F., Ferruzzi R., Meggio F., Pinna L. A., Oliviero S. Protein kinase CK2alpha' is induced by serum as a delayed early gene and cooperates with Ha-ras in fibroblast transformation. J Biol Chem. 1998 Aug 14;273(33):21291–21297. doi: 10.1074/jbc.273.33.21291. [DOI] [PubMed] [Google Scholar]
  145. Palen E., Traugh J. A. Phosphorylation of casein kinase II. Biochemistry. 1991 Jun 4;30(22):5586–5590. doi: 10.1021/bi00236a035. [DOI] [PubMed] [Google Scholar]
  146. Pavletich N. P. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol. 1999 Apr 16;287(5):821–828. doi: 10.1006/jmbi.1999.2640. [DOI] [PubMed] [Google Scholar]
  147. Pawson T., Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev. 2000 May 1;14(9):1027–1047. [PubMed] [Google Scholar]
  148. Pawson T., Scott J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science. 1997 Dec 19;278(5346):2075–2080. doi: 10.1126/science.278.5346.2075. [DOI] [PubMed] [Google Scholar]
  149. Penner C. G., Wang Z., Litchfield D. W. Expression and localization of epitope-tagged protein kinase CK2. J Cell Biochem. 1997 Mar 15;64(4):525–537. [PubMed] [Google Scholar]
  150. Pepperkok R., Lorenz P., Ansorge W., Pyerin W. Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J Biol Chem. 1994 Mar 4;269(9):6986–6991. [PubMed] [Google Scholar]
  151. Pepperkok R., Lorenz P., Jakobi R., Ansorge W., Pyerin W. Cell growth stimulation by EGF: inhibition through antisense-oligodeoxynucleotides demonstrates important role of casein kinase II. Exp Cell Res. 1991 Dec;197(2):245–253. doi: 10.1016/0014-4827(91)90429-x. [DOI] [PubMed] [Google Scholar]
  152. Pines J. Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J. 1995 Jun 15;308(Pt 3):697–711. doi: 10.1042/bj3080697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Pinna L. A. Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim Biophys Acta. 1990 Sep 24;1054(3):267–284. doi: 10.1016/0167-4889(90)90098-x. [DOI] [PubMed] [Google Scholar]
  154. Pinna L. A., Meggio F. Protein kinase CK2 ("casein kinase-2") and its implication in cell division and proliferation. Prog Cell Cycle Res. 1997;3:77–97. doi: 10.1007/978-1-4615-5371-7_7. [DOI] [PubMed] [Google Scholar]
  155. Raman C., Kuo A., Deshane J., Litchfield D. W., Kimberly R. P. Regulation of casein kinase 2 by direct interaction with cell surface receptor CD5. J Biol Chem. 1998 Jul 24;273(30):19183–19189. doi: 10.1074/jbc.273.30.19183. [DOI] [PubMed] [Google Scholar]
  156. Ravi Rajani, Bedi Atul. Sensitization of tumor cells to Apo2 ligand/TRAIL-induced apoptosis by inhibition of casein kinase II. Cancer Res. 2002 Aug 1;62(15):4180–4185. [PubMed] [Google Scholar]
  157. Rethinaswamy A., Birnbaum M. J., Glover C. V. Temperature-sensitive mutations of the CKA1 gene reveal a role for casein kinase II in maintenance of cell polarity in Saccharomyces cerevisiae. J Biol Chem. 1998 Mar 6;273(10):5869–5877. doi: 10.1074/jbc.273.10.5869. [DOI] [PubMed] [Google Scholar]
  158. Roussou I., Draetta G. The Schizosaccharomyces pombe casein kinase II alpha and beta subunits: evolutionary conservation and positive role of the beta subunit. Mol Cell Biol. 1994 Jan;14(1):576–586. doi: 10.1128/mcb.14.1.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Russo G. L., Vandenberg M. T., Yu I. J., Bae Y. S., Franza B. R., Jr, Marshak D. R. Casein kinase II phosphorylates p34cdc2 kinase in G1 phase of the HeLa cell division cycle. J Biol Chem. 1992 Oct 5;267(28):20317–20325. [PubMed] [Google Scholar]
  160. Ruzzene Maria, Penzo Daniele, Pinna Lorenzo A. Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem J. 2002 May 15;364(Pt 1):41–47. doi: 10.1042/bj3640041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Saha S., Bardelli A., Buckhaults P., Velculescu V. E., Rago C., St Croix B., Romans K. E., Choti M. A., Lengauer C., Kinzler K. W. A phosphatase associated with metastasis of colorectal cancer. Science. 2001 Oct 11;294(5545):1343–1346. doi: 10.1126/science.1065817. [DOI] [PubMed] [Google Scholar]
  162. Sanghera J. S., Charlton L. A., Paddon H. B., Pelech S. L. Purification and characterization of echinoderm casein kinase II. Regulation by protein kinase C. Biochem J. 1992 May 1;283(Pt 3):829–837. doi: 10.1042/bj2830829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Sarno S., Reddy H., Meggio F., Ruzzene M., Davies S. P., Donella-Deana A., Shugar D., Pinna L. A. Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 ('casein kinase-2'). FEBS Lett. 2001 May 4;496(1):44–48. doi: 10.1016/s0014-5793(01)02404-8. [DOI] [PubMed] [Google Scholar]
  164. Sarrouilhe D., Filhol O., Leroy D., Bonello G., Baudry M., Chambaz E. M., Cochet C. The tight association of protein kinase CK2 with plasma membranes is mediated by a specific domain of its regulatory beta-subunit. Biochim Biophys Acta. 1998 Jun 22;1403(2):199–210. doi: 10.1016/s0167-4889(98)00038-x. [DOI] [PubMed] [Google Scholar]
  165. Sayed M., Kim S. O., Salh B. S., Issinger O. G., Pelech S. L. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem. 2000 Jun 2;275(22):16569–16573. doi: 10.1074/jbc.M000312200. [DOI] [PubMed] [Google Scholar]
  166. Sayed M., Pelech S., Wong C., Marotta A., Salh B. Protein kinase CK2 is involved in G2 arrest and apoptosis following spindle damage in epithelial cells. Oncogene. 2001 Oct 25;20(48):6994–7005. doi: 10.1038/sj.onc.1204894. [DOI] [PubMed] [Google Scholar]
  167. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  168. Schillace R. V., Scott J. D. Organization of kinases, phosphatases, and receptor signaling complexes. J Clin Invest. 1999 Mar;103(6):761–765. doi: 10.1172/JCI6491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Schmidt-Spaniol I., Grimm B., Issinger O. G. Subcellular localization of protein kinase CK-2 alpha- and beta-subunits in synchronized cells from primary human fibroblasts and established cell lines. Cell Mol Biol Res. 1993;39(8):761–772. [PubMed] [Google Scholar]
  170. Seldin D. C., Leder P. Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science. 1995 Feb 10;267(5199):894–897. doi: 10.1126/science.7846532. [DOI] [PubMed] [Google Scholar]
  171. Shen J., Channavajhala P., Seldin D. C., Sonenshein G. E. Phosphorylation by the protein kinase CK2 promotes calpain-mediated degradation of IkappaBalpha. J Immunol. 2001 Nov 1;167(9):4919–4925. doi: 10.4049/jimmunol.167.9.4919. [DOI] [PubMed] [Google Scholar]
  172. Shi X., Potvin B., Huang T., Hilgard P., Spray D. C., Suadicani S. O., Wolkoff A. W., Stanley P., Stockert R. J. A novel casein kinase 2 alpha-subunit regulates membrane protein traffic in the human hepatoma cell line HuH-7. J Biol Chem. 2000 Oct 18;276(3):2075–2082. doi: 10.1074/jbc.M008583200. [DOI] [PubMed] [Google Scholar]
  173. Shore L. J., Soler A. P., Gilmour S. K. Ornithine decarboxylase expression leads to translocation and activation of protein kinase CK2 in vivo. J Biol Chem. 1997 May 9;272(19):12536–12543. doi: 10.1074/jbc.272.19.12536. [DOI] [PubMed] [Google Scholar]
  174. Skjerpen Camilla Skiple, Nilsen Trine, Wesche Jørgen, Olsnes Sjur. Binding of FGF-1 variants to protein kinase CK2 correlates with mitogenicity. EMBO J. 2002 Aug 1;21(15):4058–4069. doi: 10.1093/emboj/cdf402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Soderling T. R. Protein kinases. Regulation by autoinhibitory domains. J Biol Chem. 1990 Feb 5;265(4):1823–1826. [PubMed] [Google Scholar]
  176. Song D. H., Sussman D. J., Seldin D. C. Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells. J Biol Chem. 2000 Aug 4;275(31):23790–23797. doi: 10.1074/jbc.M909107199. [DOI] [PubMed] [Google Scholar]
  177. Stalter G., Siemer S., Becht E., Ziegler M., Remberger K., Issinger O. G. Asymmetric expression of protein kinase CK2 subunits in human kidney tumors. Biochem Biophys Res Commun. 1994 Jul 15;202(1):141–147. doi: 10.1006/bbrc.1994.1904. [DOI] [PubMed] [Google Scholar]
  178. Taylor S. S., Radzio-Andzelm E. Three protein kinase structures define a common motif. Structure. 1994 May 15;2(5):345–355. doi: 10.1016/s0969-2126(00)00036-8. [DOI] [PubMed] [Google Scholar]
  179. Thornberry N. A., Rano T. A., Peterson E. P., Rasper D. M., Timkey T., Garcia-Calvo M., Houtzager V. M., Nordstrom P. A., Roy S., Vaillancourt J. P. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997 Jul 18;272(29):17907–17911. doi: 10.1074/jbc.272.29.17907. [DOI] [PubMed] [Google Scholar]
  180. Toczyski D. P., Galgoczy D. J., Hartwell L. H. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell. 1997 Sep 19;90(6):1097–1106. doi: 10.1016/s0092-8674(00)80375-x. [DOI] [PubMed] [Google Scholar]
  181. Tuazon P. T., Traugh J. A. Casein kinase I and II--multipotential serine protein kinases: structure, function, and regulation. Adv Second Messenger Phosphoprotein Res. 1991;23:123–164. [PubMed] [Google Scholar]
  182. Ulloa L., Díaz-Nido J., Avila J. Depletion of casein kinase II by antisense oligonucleotide prevents neuritogenesis in neuroblastoma cells. EMBO J. 1993 Apr;12(4):1633–1640. doi: 10.1002/j.1460-2075.1993.tb05808.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Valero E., De Bonis S., Filhol O., Wade R. H., Langowski J., Chambaz E. M., Cochet C. Quaternary structure of casein kinase 2. Characterization of multiple oligomeric states and relation with its catalytic activity. J Biol Chem. 1995 Apr 7;270(14):8345–8352. doi: 10.1074/jbc.270.14.8345. [DOI] [PubMed] [Google Scholar]
  184. Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G., Smith H. O., Yandell M., Evans C. A., Holt R. A. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
  185. Vilk G., Derksen D. R., Litchfield D. W. Inducible expression of the regulatory protein kinase CK2beta subunit: incorporation into complexes with catalytic CK2 subunits and re-examination of the effects of CK2beta on cell proliferation. J Cell Biochem. 2001;84(1):84–99. doi: 10.1002/jcb.1268. [DOI] [PubMed] [Google Scholar]
  186. Vilk G., Saulnier R. B., St Pierre R., Litchfield D. W. Inducible expression of protein kinase CK2 in mammalian cells. Evidence for functional specialization of CK2 isoforms. J Biol Chem. 1999 May 14;274(20):14406–14414. doi: 10.1074/jbc.274.20.14406. [DOI] [PubMed] [Google Scholar]
  187. Walter J., Schnölzer M., Pyerin W., Kinzel V., Kübler D. Induced release of cell surface protein kinase yields CK1- and CK2-like enzymes in tandem. J Biol Chem. 1996 Jan 5;271(1):111–119. doi: 10.1074/jbc.271.1.111. [DOI] [PubMed] [Google Scholar]
  188. Wang H., Davis A., Yu S., Ahmed K. Response of cancer cells to molecular interruption of the CK2 signal. Mol Cell Biochem. 2001 Nov;227(1-2):167–174. [PubMed] [Google Scholar]
  189. Willert K., Brink M., Wodarz A., Varmus H., Nusse R. Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J. 1997 Jun 2;16(11):3089–3096. doi: 10.1093/emboj/16.11.3089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Wilson L. K., Dhillon N., Thorner J., Martin G. S. Casein kinase II catalyzes tyrosine phosphorylation of the yeast nucleolar immunophilin Fpr3. J Biol Chem. 1997 May 16;272(20):12961–12967. doi: 10.1074/jbc.272.20.12961. [DOI] [PubMed] [Google Scholar]
  191. Winkler K. E., Swenson K. I., Kornbluth S., Means A. R. Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science. 2000 Mar 3;287(5458):1644–1647. doi: 10.1126/science.287.5458.1644. [DOI] [PubMed] [Google Scholar]
  192. Wirkner U., Voss H., Lichter P., Ansorge W., Pyerin W. The human gene (CSNK2A1) coding for the casein kinase II subunit alpha is located on chromosome 20 and contains tandemly arranged Alu repeats. Genomics. 1994 Jan 15;19(2):257–265. doi: 10.1006/geno.1994.1056. [DOI] [PubMed] [Google Scholar]
  193. Wong H. N., Ward M. A., Bell A. W., Chevet E., Bains S., Blackstock W. P., Solari R., Thomas D. Y., Bergeron J. J. Conserved in vivo phosphorylation of calnexin at casein kinase II sites as well as a protein kinase C/proline-directed kinase site. J Biol Chem. 1998 Jul 3;273(27):17227–17235. doi: 10.1074/jbc.273.27.17227. [DOI] [PubMed] [Google Scholar]
  194. Xu X., Rich E. S., Jr, Seldin D. C. Murine protein kinase CK2 alpha': cDNA and genomic cloning and chromosomal mapping. Genomics. 1998 Feb 15;48(1):79–86. doi: 10.1006/geno.1997.5154. [DOI] [PubMed] [Google Scholar]
  195. Xu X., Toselli P. A., Russell L. D., Seldin D. C. Globozoospermia in mice lacking the casein kinase II alpha' catalytic subunit. Nat Genet. 1999 Sep;23(1):118–121. doi: 10.1038/12729. [DOI] [PubMed] [Google Scholar]
  196. Yang-Feng T. L., Naiman T., Kopatz I., Eli D., Dafni N., Canaani D. Assignment of the human casein kinase II alpha' subunit gene (CSNK2A1) to chromosome 16p13.2-p13.3. Genomics. 1994 Jan 1;19(1):173–173. doi: 10.1006/geno.1994.1032. [DOI] [PubMed] [Google Scholar]
  197. Yee A. A., Yin P., Siderovski D. P., Mak T. W., Litchfield D. W., Arrowsmith C. H. Cooperative interaction between the DNA-binding domains of PU.1 and IRF4. J Mol Biol. 1998 Jun 26;279(5):1075–1083. doi: 10.1006/jmbi.1998.1838. [DOI] [PubMed] [Google Scholar]
  198. Yenice S., Davis A. T., Goueli S. A., Akdas A., Limas C., Ahmed K. Nuclear casein kinase 2 (CK-2) activity in human normal, benign hyperplastic, and cancerous prostate. Prostate. 1994;24(1):11–16. doi: 10.1002/pros.2990240105. [DOI] [PubMed] [Google Scholar]
  199. Yin X., Gu S., Jiang J. X. Regulation of lens connexin 45.6 by apoptotic protease, caspase-3. Cell Commun Adhes. 2001;8(4-6):373–376. doi: 10.3109/15419060109080756. [DOI] [PubMed] [Google Scholar]
  200. Yu I. J., Spector D. L., Bae Y. S., Marshak D. R. Immunocytochemical localization of casein kinase II during interphase and mitosis. J Cell Biol. 1991 Sep;114(6):1217–1232. doi: 10.1083/jcb.114.6.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Zhang Cunjie, Vilk Greg, Canton David A., Litchfield David W. Phosphorylation regulates the stability of the regulatory CK2beta subunit. Oncogene. 2002 May 23;21(23):3754–3764. doi: 10.1038/sj.onc.1205467. [DOI] [PubMed] [Google Scholar]
  202. Zhou X. Z., Lu P. J., Wulf G., Lu K. P. Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism. Cell Mol Life Sci. 1999 Nov 30;56(9-10):788–806. doi: 10.1007/s000180050026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Zhu H., Klemic J. F., Chang S., Bertone P., Casamayor A., Klemic K. G., Smith D., Gerstein M., Reed M. A., Snyder M. Analysis of yeast protein kinases using protein chips. Nat Genet. 2000 Nov;26(3):283–289. doi: 10.1038/81576. [DOI] [PubMed] [Google Scholar]
  204. ole-MoiYoi O. K., Brown W. C., Iams K. P., Nayar A., Tsukamoto T., Macklin M. D. Evidence for the induction of casein kinase II in bovine lymphocytes transformed by the intracellular protozoan parasite Theileria parva. EMBO J. 1993 Apr;12(4):1621–1631. doi: 10.1002/j.1460-2075.1993.tb05807.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. von Mering Christian, Krause Roland, Snel Berend, Cornell Michael, Oliver Stephen G., Fields Stanley, Bork Peer. Comparative assessment of large-scale data sets of protein-protein interactions. Nature. 2002 May 8;417(6887):399–403. doi: 10.1038/nature750. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES