Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 15;369(Pt 2):399–406. doi: 10.1042/BJ20020933

Superoxide-dependent consumption of nitric oxide in biological media may confound in vitro experiments.

Robert G Keynes 1, Charmaine Griffiths 1, John Garthwaite 1
PMCID: PMC1223083  PMID: 12366375

Abstract

NO functions ubiquitously as a biological messenger but has also been implicated in various pathologies, a role supported by many reports that exogenous or endogenous NO can kill cells in tissue culture. In the course of experiments aimed at examining the toxicity of exogenous NO towards cultured cells, we found that most of the NO delivered using a NONOate (diazeniumdiolate) donor was removed by reaction with the tissue-culture medium. Two NO-consuming ingredients were identified: Hepes buffer and, under laboratory lighting, the vitamin riboflavin. In each case, the loss of NO was reversed by the addition of superoxide dismutase. The effect of Hepes was observed over a range of NONOate concentrations (producing up to 1 microM NO). Furthermore, from measurements of soluble guanylate cyclase activity, Hepes-dependent NO consumption remained significant at the low nanomolar NO concentrations relevant to physiological NO signalling. The combination of Hepes and riboflavin (in the light) acted synergistically to the extent that, instead of a steady-state concentration of about 1 microM being generated, NO was undetectable (<10 nM). Again, the consumption could be inhibited by superoxide dismutase. A scheme is proposed whereby a "vicious cycle" of superoxide radical (O(2)(.-)) formation occurs as a result of oxidation of Hepes to its radical species, fuelled by the subsequent reaction of O(2)(.-) with NO to form peroxynitrite (ONOO(-)). The inadvertent production of ONOO(-) and other reactive species in biological media, or the associated loss of NO, may contribute to the adverse effects, or otherwise, of NO in vitro.

Full Text

The Full Text of this article is available as a PDF (200.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aizenman E., Brimecombe J. C., Potthoff W. K., Rosenberg P. A. Why is the role of nitric oxide in NMDA receptor function and dysfunction so controversial? Prog Brain Res. 1998;118:53–71. doi: 10.1016/s0079-6123(08)63200-8. [DOI] [PubMed] [Google Scholar]
  2. Bal-Price A., Brown G. C. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci. 2001 Sep 1;21(17):6480–6491. doi: 10.1523/JNEUROSCI.21-17-06480.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beckman J. S., Koppenol W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996 Nov;271(5 Pt 1):C1424–C1437. doi: 10.1152/ajpcell.1996.271.5.C1424. [DOI] [PubMed] [Google Scholar]
  4. Bellamy T. C., Wood J., Goodwin D. A., Garthwaite J. Rapid desensitization of the nitric oxide receptor, soluble guanylyl cyclase, underlies diversity of cellular cGMP responses. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2928–2933. doi: 10.1073/pnas.97.6.2928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonfoco E., Krainc D., Ankarcrona M., Nicotera P., Lipton S. A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7162–7166. doi: 10.1073/pnas.92.16.7162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brorson J. R., Schumacker P. T., Zhang H. Nitric oxide acutely inhibits neuronal energy production. The Committees on Neurobiology and Cell Physiology. J Neurosci. 1999 Jan 1;19(1):147–158. doi: 10.1523/JNEUROSCI.19-01-00147.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Butler A. R., Flitney F. W., Williams D. L. NO, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: a chemist's perspective. Trends Pharmacol Sci. 1995 Jan;16(1):18–22. doi: 10.1016/s0165-6147(00)88968-3. [DOI] [PubMed] [Google Scholar]
  8. Clement Marie-Véronique, Long Lee Hua, Ramalingam Jeyakumar, Halliwell Barry. The cytotoxicity of dopamine may be an artefact of cell culture. J Neurochem. 2002 May;81(3):414–421. doi: 10.1046/j.1471-4159.2002.00802.x. [DOI] [PubMed] [Google Scholar]
  9. Clementi E., Brown G. C., Foxwell N., Moncada S. On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1559–1562. doi: 10.1073/pnas.96.4.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davies M. J., Donkor R., Dunster C. A., Gee C. A., Jonas S., Willson R. L. Desferrioxamine (Desferal) and superoxide free radicals. Formation of an enzyme-damaging nitroxide. Biochem J. 1987 Sep 15;246(3):725–729. doi: 10.1042/bj2460725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dawson V. L., Dawson T. M., London E. D., Bredt D. S., Snyder S. H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6368–6371. doi: 10.1073/pnas.88.14.6368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dawson V. L., Kizushi V. M., Huang P. L., Snyder S. H., Dawson T. M. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci. 1996 Apr 15;16(8):2479–2487. doi: 10.1523/JNEUROSCI.16-08-02479.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Demerlé-Pallardy C., Lonchampt M. O., Chabrier P. E., Braquet P. Absence of implication of L-arginine/nitric oxide pathway on neuronal cell injury induced by L-glutamate or hypoxia. Biochem Biophys Res Commun. 1991 Nov 27;181(1):456–464. doi: 10.1016/s0006-291x(05)81441-x. [DOI] [PubMed] [Google Scholar]
  14. Egan T. J., Barthakur S. R., Aisen P. Catalysis of the Haber-Weiss reaction by iron-diethylenetriaminepentaacetate. J Inorg Biochem. 1992 Dec;48(4):241–249. doi: 10.1016/0162-0134(92)84051-n. [DOI] [PubMed] [Google Scholar]
  15. Feelisch M., Ostrowski J., Noack E. On the mechanism of NO release from sydnonimines. J Cardiovasc Pharmacol. 1989;14 (Suppl 11):S13–S22. [PubMed] [Google Scholar]
  16. Ford P. C., Wink D. A., Stanbury D. M. Autoxidation kinetics of aqueous nitric oxide. FEBS Lett. 1993 Jul 12;326(1-3):1–3. doi: 10.1016/0014-5793(93)81748-o. [DOI] [PubMed] [Google Scholar]
  17. Grady J. K., Chasteen N. D., Harris D. C. Radicals from "Good's" buffers. Anal Biochem. 1988 Aug 15;173(1):111–115. doi: 10.1016/0003-2697(88)90167-4. [DOI] [PubMed] [Google Scholar]
  18. Griffin F. M., Ashland G., Capizzi R. L. Kinetics of phototoxicity of Fischer's medium for L5178Y leukemic cells. Cancer Res. 1981 Jun;41(6):2241–2248. [PubMed] [Google Scholar]
  19. Griffiths C., Garthwaite J. The shaping of nitric oxide signals by a cellular sink. J Physiol. 2001 Nov 1;536(Pt 3):855–862. doi: 10.1111/j.1469-7793.2001.00855.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grzelak A., Rychlik B., Bartosz G. Light-dependent generation of reactive oxygen species in cell culture media. Free Radic Biol Med. 2001 Jun 15;30(12):1418–1425. doi: 10.1016/s0891-5849(01)00545-7. [DOI] [PubMed] [Google Scholar]
  21. Hewett S. J., Corbett J. A., McDaniel M. L., Choi D. W. Inhibition of nitric oxide formation does not protect murine cortical cell cultures from N-methyl-D-aspartate neurotoxicity. Brain Res. 1993 Oct 22;625(2):337–341. doi: 10.1016/0006-8993(93)91078-7. [DOI] [PubMed] [Google Scholar]
  22. Ignarro L. J. Signal transduction mechanisms involving nitric oxide. Biochem Pharmacol. 1991 Feb 15;41(4):485–490. doi: 10.1016/0006-2952(91)90618-f. [DOI] [PubMed] [Google Scholar]
  23. Joshi P. C. Comparison of the DNA-damaging property of photosensitised riboflavin via singlet oxygen (1O2) and superoxide radical O2-. mechanisms. Toxicol Lett. 1985 Aug;26(2-3):211–217. doi: 10.1016/0378-4274(85)90169-9. [DOI] [PubMed] [Google Scholar]
  24. Kirsch M., Lomonosova E. E., Korth H. G., Sustmann R., de Groot H. Hydrogen peroxide formation by reaction of peroxynitrite with HEPES and related tertiary amines. Implications for a general mechanism. J Biol Chem. 1998 May 22;273(21):12716–12724. doi: 10.1074/jbc.273.21.12716. [DOI] [PubMed] [Google Scholar]
  25. Koppenol W. H. The basic chemistry of nitrogen monoxide and peroxynitrite. Free Radic Biol Med. 1998 Sep;25(4-5):385–391. doi: 10.1016/s0891-5849(98)00093-8. [DOI] [PubMed] [Google Scholar]
  26. Lewis R. S., Tamir S., Tannenbaum S. R., Deen W. M. Kinetic analysis of the fate of nitric oxide synthesized by macrophages in vitro. J Biol Chem. 1995 Dec 8;270(49):29350–29355. doi: 10.1074/jbc.270.49.29350. [DOI] [PubMed] [Google Scholar]
  27. Lipton S. A., Stamler J. S. Actions of redox-related congeners of nitric oxide at the NMDA receptor. Neuropharmacology. 1994 Nov;33(11):1229–1233. doi: 10.1016/0028-3908(94)90021-3. [DOI] [PubMed] [Google Scholar]
  28. Naseem I., Ahmad M., Hadi S. M. Effect of alkylated and intercalated DNA on the generation of superoxide anion by riboflavin. Biosci Rep. 1988 Oct;8(5):485–492. doi: 10.1007/BF01121647. [DOI] [PubMed] [Google Scholar]
  29. Pauwels P. J., Leysen J. E. Blockade of nitric oxide formation does not prevent glutamate-induced neurotoxicity in neuronal cultures from rat hippocampus. Neurosci Lett. 1992 Aug 31;143(1-2):27–30. doi: 10.1016/0304-3940(92)90225-v. [DOI] [PubMed] [Google Scholar]
  30. Roubaud V., Sankarapandi S., Kuppusamy P., Tordo P., Zweier J. L. Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide. Anal Biochem. 1997 May 1;247(2):404–411. doi: 10.1006/abio.1997.2067. [DOI] [PubMed] [Google Scholar]
  31. Schmidt K., Desch W., Klatt P., Kukovetz W. R., Mayer B. Release of nitric oxide from donors with known half-life: a mathematical model for calculating nitric oxide concentrations in aerobic solutions. Naunyn Schmiedebergs Arch Pharmacol. 1997 Apr;355(4):457–462. doi: 10.1007/pl00004969. [DOI] [PubMed] [Google Scholar]
  32. Schmidt K., Pfeiffer S., Mayer B. Reaction of peroxynitrite with HEPES or MOPS results in the formation of nitric oxide donors. Free Radic Biol Med. 1998 Mar 15;24(5):859–862. doi: 10.1016/s0891-5849(97)00366-3. [DOI] [PubMed] [Google Scholar]
  33. Simpson J. A., Cheeseman K. H., Smith S. E., Dean R. T. Free-radical generation by copper ions and hydrogen peroxide. Stimulation by Hepes buffer. Biochem J. 1988 Sep 1;254(2):519–523. doi: 10.1042/bj2540519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stoien J. D., Wang R. J. Effect of near-ultraviolet and visible light on mammalian cells in culture II. Formation of toxic photoproducts in tissue culture medium by blacklight. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3961–3965. doi: 10.1073/pnas.71.10.3961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Waldman S. A., Murad F. Cyclic GMP synthesis and function. Pharmacol Rev. 1987 Sep;39(3):163–196. [PubMed] [Google Scholar]
  36. Wang R. J., Nixon B. R. Identification of hydrogen peroxide as a photoproduct toxic to human cells in tissue-culture medium irradiated with "daylight" fluorescent light. In Vitro. 1978 Aug;14(8):715–722. doi: 10.1007/BF02616168. [DOI] [PubMed] [Google Scholar]
  37. Zigler J. S., Jr, Lepe-Zuniga J. L., Vistica B., Gery I. Analysis of the cytotoxic effects of light-exposed HEPES-containing culture medium. In Vitro Cell Dev Biol. 1985 May;21(5):282–287. doi: 10.1007/BF02620943. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES