Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 1;369(Pt 3):619–626. doi: 10.1042/BJ20021165

The transition between active and de-activated forms of NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial membrane of Neurospora crassa.

Vera G Grivennikova 1, Darya V Serebryanaya 1, Elena P Isakova 1, Tatyana A Belozerskaya 1, Andrei D Vinogradov 1
PMCID: PMC1223102  PMID: 12379145

Abstract

The mammalian mitochondrial NADH:ubiquinone oxidoreductase (Complex I) has been shown to exist in two kinetically and structurally distinct slowly interconvertible forms, active (A) and de-activated (D) [Vinogradov and Grivennikova (2001) IUBMB Life 52, 129-134]. This work was undertaken to investigate the putative Complex I A-D transition in the mitochondrial membrane of the lower eukaryote Neurospora crassa and in plasma membrane of the prokaryote Paracoccus denitrificans, organisms that are eligible for molecular genetic manipulations. The potential interconversion between A and D forms was assessed by examination of the initial and steady-state rates of NADH oxidation catalysed by inside-out submitochondrial ( N. crassa ) and sub-bacterial ( P. denitrificans ) particles and their sensitivities to N -ethylmaleimide and Mg(2+). All diagnostic tests provide evidence that slow temperature- and turnover-dependent A-D transition is an explicit feature of eukaryotic N. crassa Complex I, whereas the phenomenon is not seen in the membranes of the prokaryote P. denitrificans. Significantly lower activation energy for A-to-D transition characterizes the N. crassa enzyme compared with that determined previously for the mammalian Complex I. Either a lag or a burst in the onset of the NADH oxidase assayed in the presence of Mg(2+) is seen when the reaction is initiated by the thermally de-activated or NADH-activated particles, whereas the delayed final activities of both preparations are the same. We conclude that continuous slow cycling between A and D forms occurs during the steady-state operation of Complex I in N. crassa mitochondria.

Full Text

The Full Text of this article is available as a PDF (161.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida T., Duarte M., Melo A. M., Videira A. The 24-kDa iron-sulphur subunit of complex I is required for enzyme activity. Eur J Biochem. 1999 Oct 1;265(1):86–93. doi: 10.1046/j.1432-1327.1999.00668.x. [DOI] [PubMed] [Google Scholar]
  2. Au H. C., Seo B. B., Matsuno-Yagi A., Yagi T., Scheffler I. E. The NDUFA1 gene product (MWFE protein) is essential for activity of complex I in mammalian mitochondria. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4354–4359. doi: 10.1073/pnas.96.8.4354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dupuis A., Chevallet M., Darrouzet E., Duborjal H., Lunardi J., Issartel J. P. The complex I from Rhodobacter capsulatus. Biochim Biophys Acta. 1998 May 6;1364(2):147–165. doi: 10.1016/s0005-2728(98)00025-5. [DOI] [PubMed] [Google Scholar]
  4. Fearnley I. M., Carroll J., Shannon R. J., Runswick M. J., Walker J. E., Hirst J. GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem. 2001 Aug 24;276(42):38345–38348. doi: 10.1074/jbc.C100444200. [DOI] [PubMed] [Google Scholar]
  5. Fearnley I. M., Walker J. E. Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim Biophys Acta. 1992 Dec 7;1140(2):105–134. doi: 10.1016/0005-2728(92)90001-i. [DOI] [PubMed] [Google Scholar]
  6. Ferreirinha F., Duarte M., Melo A. M., Videira A. Effects of disrupting the 21 kDa subunit of complex I from Neurospora crassa. Biochem J. 1999 Sep 15;342(Pt 3):551–554. [PMC free article] [PubMed] [Google Scholar]
  7. Friedrich T., van Heek P., Leif H., Ohnishi T., Forche E., Kunze B., Jansen R., Trowitzsch-Kienast W., Höfle G., Reichenbach H. Two binding sites of inhibitors in NADH: ubiquinone oxidoreductase (complex I). Relationship of one site with the ubiquinone-binding site of bacterial glucose:ubiquinone oxidoreductase. Eur J Biochem. 1994 Jan 15;219(1-2):691–698. doi: 10.1111/j.1432-1033.1994.tb19985.x. [DOI] [PubMed] [Google Scholar]
  8. Gavrikova E. V., Vinogradov A. D. Active/de-active state transition of the mitochondrial complex I as revealed by specific sulfhydryl group labeling. FEBS Lett. 1999 Jul 16;455(1-2):36–40. doi: 10.1016/s0014-5793(99)00850-9. [DOI] [PubMed] [Google Scholar]
  9. Grivennikova V. G., Kapustin A. N., Vinogradov A. D. Catalytic activity of NADH-ubiquinone oxidoreductase (complex I) in intact mitochondria. evidence for the slow active/inactive transition. J Biol Chem. 2000 Dec 21;276(12):9038–9044. doi: 10.1074/jbc.M009661200. [DOI] [PubMed] [Google Scholar]
  10. Grivennikova V. G., Maklashina E. O., Gavrikova E. V., Vinogradov A. D. Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition. Biochim Biophys Acta. 1997 Apr 11;1319(2-3):223–232. doi: 10.1016/s0005-2728(96)00163-6. [DOI] [PubMed] [Google Scholar]
  11. Hatefi Y. Preparation and properties of NADH: ubiquinone oxidoreductase (complexI), EC 1.6.5.3. Methods Enzymol. 1978;53:11–14. doi: 10.1016/s0076-6879(78)53006-1. [DOI] [PubMed] [Google Scholar]
  12. Isakova E. P., Gorpenko L. V., Shurubor E. I., Belozerskaya T. A., Zvyagilskaya R. A. Isolation and characterization of tightly coupled mitochondria from wild type and nap mutant Neurospora crassa. Biochemistry (Mosc) 2002 Feb;67(2):260–264. doi: 10.1023/a:1014430501650. [DOI] [PubMed] [Google Scholar]
  13. John P., Whatley F. R. Oxidative phosphorylation coupled to oxygen uptake and nitrate reduction in Micrococcus denitrificans. Biochim Biophys Acta. 1970 Sep 1;216(2):342–352. doi: 10.1016/0005-2728(70)90225-2. [DOI] [PubMed] [Google Scholar]
  14. John Philip, Hamilton W. A. Respiratory control in membrane particles from Micrococcus denitrificans. FEBS Lett. 1970 Oct 16;10(4):246–248. doi: 10.1016/0014-5793(70)80639-1. [DOI] [PubMed] [Google Scholar]
  15. Kashani-Poor N., Kerscher S., Zickermann V., Brandt U. Efficient large scale purification of his-tagged proton translocating NADH:ubiquinone oxidoreductase (complex I) from the strictly aerobic yeast Yarrowia lipolytica. Biochim Biophys Acta. 2001 Apr 2;1504(2-3):363–370. doi: 10.1016/s0005-2728(00)00266-8. [DOI] [PubMed] [Google Scholar]
  16. Kerscher S. J., Okun J. G., Brandt U. A single external enzyme confers alternative NADH:ubiquinone oxidoreductase activity in Yarrowia lipolytica. J Cell Sci. 1999 Jul;112(Pt 14):2347–2354. doi: 10.1242/jcs.112.14.2347. [DOI] [PubMed] [Google Scholar]
  17. Kotlyar A. B., Albracht S. P., van Spanning R. J. Comparison of energization of complex I in membrane particles from Paracoccus denitrificans and bovine heart mitochondria. Biochim Biophys Acta. 1998 Jun 10;1365(1-2):53–59. doi: 10.1016/s0005-2728(98)00042-5. [DOI] [PubMed] [Google Scholar]
  18. Kotlyar A. B., Sled V. D., Vinogradov A. D. Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim Biophys Acta. 1992 Jan 16;1098(2):144–150. doi: 10.1016/s0005-2728(05)80329-9. [DOI] [PubMed] [Google Scholar]
  19. Kotlyar A. B., Vinogradov A. D. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim Biophys Acta. 1990 Aug 30;1019(2):151–158. doi: 10.1016/0005-2728(90)90137-s. [DOI] [PubMed] [Google Scholar]
  20. Lambowitz A. M., Smith E. W., Slayman C. W. Electron transport in Neurospora mitochondria. Studies on wild type and poky. J Biol Chem. 1972 Aug 10;247(15):4850–4858. [PubMed] [Google Scholar]
  21. Maklashina Elena, Sher Yelizaveta, Zhou Hui-Zhong, Gray Mary O., Karliner Joel S., Cecchini Gary. Effect of anoxia/reperfusion on the reversible active/de-active transition of NADH-ubiquinone oxidoreductase (complex I) in rat heart. Biochim Biophys Acta. 2002 Oct 3;1556(1):6–12. doi: 10.1016/s0005-2728(02)00280-3. [DOI] [PubMed] [Google Scholar]
  22. Matsushita K., Ohnishi T., Kaback H. R. NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry. 1987 Dec 1;26(24):7732–7737. doi: 10.1021/bi00398a029. [DOI] [PubMed] [Google Scholar]
  23. Melo A. M., Duarte M., Videira A. Primary structure and characterisation of a 64 kDa NADH dehydrogenase from the inner membrane of Neurospora crassa mitochondria. Biochim Biophys Acta. 1999 Aug 4;1412(3):282–287. doi: 10.1016/s0005-2728(99)00072-9. [DOI] [PubMed] [Google Scholar]
  24. Ohnishi T., Magnitsky S., Toulokhonova L., Yano T., Yagi T., Burbaev D. S., Vinogradov A. D., Sled V. D. EPR studies of the possible binding sites of the cluster N2, semiquinones, and specific inhibitors of the NADH:quinone oxidoreductase (complex I). Biochem Soc Trans. 1999 Aug;27(4):586–591. doi: 10.1042/bst0270586. [DOI] [PubMed] [Google Scholar]
  25. Okun J. G., Zickermann V., Zwicker K., Schägger H., Brandt U. Binding of detergents and inhibitors to bovine complex I - a novel purification procedure for bovine complex I retaining full inhibitor sensitivity. Biochim Biophys Acta. 2000 Jul 20;1459(1):77–87. doi: 10.1016/s0005-2728(00)00115-8. [DOI] [PubMed] [Google Scholar]
  26. Papa S., Sardanelli A. M., Cocco T., Speranza F., Scacco S. C., Technikova-Dobrova Z. The nuclear-encoded 18 kDa (IP) AQDQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP-dependent protein kinase. FEBS Lett. 1996 Feb 5;379(3):299–301. doi: 10.1016/0014-5793(95)01532-9. [DOI] [PubMed] [Google Scholar]
  27. Papa S., Scacco S., Sardanelli A. M., Vergari R., Papa F., Budde S., van den Heuvel L., Smeitink J. Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome. FEBS Lett. 2001 Feb 2;489(2-3):259–262. doi: 10.1016/s0014-5793(00)02334-6. [DOI] [PubMed] [Google Scholar]
  28. Rasmusson AG, Heiser V, V, Zabaleta E, Brennicke A, Grohmann L. Physiological, biochemical and molecular aspects of mitochondrial complex I in plants . Biochim Biophys Acta. 1998 May 6;1364(2):101–111. doi: 10.1016/s0005-2728(98)00021-8. [DOI] [PubMed] [Google Scholar]
  29. Runswick M. J., Fearnley I. M., Skehel J. M., Walker J. E. Presence of an acyl carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria. FEBS Lett. 1991 Jul 29;286(1-2):121–124. doi: 10.1016/0014-5793(91)80955-3. [DOI] [PubMed] [Google Scholar]
  30. Sackmann U., Zensen R., Röhlen D., Jahnke U., Weiss H. The acyl-carrier protein in Neurospora crassa mitochondria is a subunit of NADH:ubiquinone reductase (complex I). Eur J Biochem. 1991 Sep 1;200(2):463–469. doi: 10.1111/j.1432-1033.1991.tb16205.x. [DOI] [PubMed] [Google Scholar]
  31. Schulte U. Biogenesis of respiratory complex I. J Bioenerg Biomembr. 2001 Jun;33(3):205–212. doi: 10.1023/a:1010730919074. [DOI] [PubMed] [Google Scholar]
  32. Ushakova A. V., Grivennikova V. G., Ohnishi T., Vinogradov A. D. Triton X-100 as a specific inhibitor of the mammalian NADH-ubiquinone oxidoreductase (Complex I). Biochim Biophys Acta. 1999 Jan 5;1409(3):143–153. doi: 10.1016/s0005-2728(98)00156-x. [DOI] [PubMed] [Google Scholar]
  33. Videir A., Duarte M. On complex I and other NADH:ubiquinone reductases of Neurospora crassa mitochondria. J Bioenerg Biomembr. 2001 Jun;33(3):197–203. doi: 10.1023/a:1010778802236. [DOI] [PubMed] [Google Scholar]
  34. Videira Arnaldo, Duarte Margarida. From NADH to ubiquinone in Neurospora mitochondria. Biochim Biophys Acta. 2002 Sep 10;1555(1-3):187–191. doi: 10.1016/s0005-2728(02)00276-1. [DOI] [PubMed] [Google Scholar]
  35. Vinogradov A. D. Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. Biochim Biophys Acta. 1998 May 6;1364(2):169–185. doi: 10.1016/s0005-2728(98)00026-7. [DOI] [PubMed] [Google Scholar]
  36. Vinogradov A. D., Grivennikova V. G. The mitochondrial complex I: progress in understanding of catalytic properties. IUBMB Life. 2001 Sep-Nov;52(3-5):129–134. doi: 10.1080/15216540152845920. [DOI] [PubMed] [Google Scholar]
  37. Vinogradov A. D. Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase. J Bioenerg Biomembr. 1993 Aug;25(4):367–375. doi: 10.1007/BF00762462. [DOI] [PubMed] [Google Scholar]
  38. Walker J. E. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys. 1992 Aug;25(3):253–324. doi: 10.1017/s003358350000425x. [DOI] [PubMed] [Google Scholar]
  39. Weidner U., Geier S., Ptock A., Friedrich T., Leif H., Weiss H. The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol. 1993 Sep 5;233(1):109–122. doi: 10.1006/jmbi.1993.1488. [DOI] [PubMed] [Google Scholar]
  40. Weiss H., Friedrich T., Hofhaus G., Preis D. The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem. 1991 May 8;197(3):563–576. doi: 10.1111/j.1432-1033.1991.tb15945.x. [DOI] [PubMed] [Google Scholar]
  41. Weiss H., von Jagow G., Klingenberg M., Bücher T. Characterization of Neurospora crassa mitochondria prepared with a grind-mill. Eur J Biochem. 1970 May 1;14(1):75–82. doi: 10.1111/j.1432-1033.1970.tb00263.x. [DOI] [PubMed] [Google Scholar]
  42. Xu X., Matsuno-Yagi A., Yagi T. DNA sequencing of the seven remaining structural genes of the gene cluster encoding the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans. Biochemistry. 1993 Jan 26;32(3):968–981. doi: 10.1021/bi00054a030. [DOI] [PubMed] [Google Scholar]
  43. Yagi T., Seo B. B., Di Bernardo S., Nakamaru-Ogiso E., Kao M. C., Matsuno-Yagi A. NADH dehydrogenases: from basic science to biomedicine. J Bioenerg Biomembr. 2001 Jun;33(3):233–242. doi: 10.1023/a:1010787004053. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES