Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 15;370(Pt 1):19–28. doi: 10.1042/BJ20021779

Genomic identification and biochemical characterization of the mammalian polyamine oxidase involved in polyamine back-conversion.

Slavoljub Vujcic 1, Ping Liang 1, Paula Diegelman 1, Debora L Kramer 1, Carl W Porter 1
PMCID: PMC1223169  PMID: 12477380

Abstract

In the polyamine back-conversion pathway, spermine and spermidine are first acetylated by spermidine/spermine N1 -acetyltransferase (SSAT) and then oxidized by polyamine oxidase (PAO) to produce spermidine and putrescine respectively. Although PAO was first purified more than two decades ago, the protein has not yet been linked to genomic sequences. In the present study, we apply a BLAST search strategy to identify novel oxidase sequences located on human chromosome 10 and mouse chromosome 7. Homologous mammalian cDNAs derived from human brain and mouse mammary tumour were deduced to encode proteins of approx. 55 kDa having 82% sequence identity. When either cDNA was transiently transfected into HEK-293 cells, intracellular spermine pools decreased by approx. 30%, whereas spermidine increased 2-4-fold. Lysates of human PAO cDNA-transfected HEK-293 cells, but not vector-transfected cells, rapidly oxidized N1-acetylspermine to spermidine. Substrate specificity determinations with the lysate assay revealed a preference ranking of N1-acetylspermine= N1-acetylspermidine> N1,N12-diacetylspermine>>spermine; spermidine was not acted upon. This ranking is identical to that reported for purified PAO and distinctly different from the recently identified spermine oxidase (SMO), which prefers spermine over N1-acetylspermine. Monoethyl- and diethylspermine analogues also served as substrates for PAO, and were internally cleaved adjacent to a secondary amine. We deduce that the present oxidase sequences are those of the FAD-dependent PAO involved in the polyamine back-conversion pathway. In Northern blot analysis, PAO mRNA was much less abundant in HEK-293 cells than SMO or SSAT mRNA, and all three were differentially induced in a similar manner by selected polyamine analogues. The identification of PAO sequences, together with the recently identified SMO sequences, provides new opportunities for understanding the dynamics of polyamine homoeostasis and for interpreting metabolic and cellular responses to clinically-relevant polyamine analogues and inhibitors.

Full Text

The Full Text of this article is available as a PDF (465.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bateman A., Birney E., Durbin R., Eddy S. R., Finn R. D., Sonnhammer E. L. Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res. 1999 Jan 1;27(1):260–262. doi: 10.1093/nar/27.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bergeron R. J., Weimar W. R., Luchetta G., Streiff R. R., Wiegand J., Perrin J., Schreier K. M., Porter C., Yao G. W., Dimova H. Metabolism and pharmacokinetics of N1,N11-diethylnorspermine. Drug Metab Dispos. 1995 Oct;23(10):1117–1125. [PubMed] [Google Scholar]
  4. Bey P., Bolkenius F. N., Seiler N., Casara P. N-2,3-Butadienyl-1,4-butanediamine derivatives: potent irreversible inactivators of mammalian polyamine oxidase. J Med Chem. 1985 Jan;28(1):1–2. doi: 10.1021/jm00379a001. [DOI] [PubMed] [Google Scholar]
  5. Bitonti A. J., Dumont J. A., Bush T. L., Stemerick D. M., Edwards M. L., McCann P. P. Bis(benzyl)polyamine analogs as novel substrates for polyamine oxidase. J Biol Chem. 1990 Jan 5;265(1):382–388. [PubMed] [Google Scholar]
  6. Bolkenius F. N., Bey P., Seiler N. Specific inhibition of polyamine oxidase in vivo is a method for the elucidation of its physiological role. Biochim Biophys Acta. 1985 Jan 28;838(1):69–76. doi: 10.1016/0304-4165(85)90251-x. [DOI] [PubMed] [Google Scholar]
  7. Bolkenius F. N., Seiler N. Acetylderivatives as intermediates in polyamine catabolism. Int J Biochem. 1981;13(3):287–292. doi: 10.1016/0020-711x(81)90080-x. [DOI] [PubMed] [Google Scholar]
  8. Bolkenius F. N., Seiler N. New substrates of polyamine oxidase. Dealkylation of N-alkyl-alpha, omega-diamines. Biol Chem Hoppe Seyler. 1989 Jun;370(6):525–531. doi: 10.1515/bchm3.1989.370.1.525. [DOI] [PubMed] [Google Scholar]
  9. Casero R. A., Jr, Pegg A. E. Spermidine/spermine N1-acetyltransferase--the turning point in polyamine metabolism. FASEB J. 1993 May;7(8):653–661. [PubMed] [Google Scholar]
  10. Dai H., Kramer D. L., Yang C., Murti K. G., Porter C. W., Cleveland J. L. The polyamine oxidase inhibitor MDL-72,527 selectively induces apoptosis of transformed hematopoietic cells through lysosomotropic effects. Cancer Res. 1999 Oct 1;59(19):4944–4954. [PubMed] [Google Scholar]
  11. Gramzinski R. A., Parchment R. E., Pierce G. B. Evidence linking programmed cell death in the blastocyst to polyamine oxidation. Differentiation. 1990 Mar;43(1):59–65. doi: 10.1111/j.1432-0436.1990.tb00430.x. [DOI] [PubMed] [Google Scholar]
  12. Ha H. C., Woster P. M., Yager J. D., Casero R. A., Jr The role of polyamine catabolism in polyamine analogue-induced programmed cell death. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11557–11562. doi: 10.1073/pnas.94.21.11557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Halline A. G., Brasitus T. A. Reversed-phase high-performance liquid chromatographic method for the measurement of polyamine oxidase activity. J Chromatogr. 1990 Nov 30;533:187–194. doi: 10.1016/s0378-4347(00)82201-x. [DOI] [PubMed] [Google Scholar]
  14. Hu R. H., Pegg A. E. Rapid induction of apoptosis by deregulated uptake of polyamine analogues. Biochem J. 1997 Nov 15;328(Pt 1):307–316. doi: 10.1042/bj3280307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hölttä E. Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry. 1977 Jan 11;16(1):91–100. doi: 10.1021/bi00620a015. [DOI] [PubMed] [Google Scholar]
  16. Libby P. R., Porter C. W. Separation of two isozymes of polyamine oxidase from murine L1210 leukemia cells. Biochem Biophys Res Commun. 1987 Apr 14;144(1):528–535. doi: 10.1016/s0006-291x(87)80541-7. [DOI] [PubMed] [Google Scholar]
  17. Libby P. R. Rat liver nuclear N-acetyltransferases: separation of two enzymes with both histone and spermidine acetyltransferase activity. Arch Biochem Biophys. 1980 Aug;203(1):384–389. doi: 10.1016/0003-9861(80)90190-3. [DOI] [PubMed] [Google Scholar]
  18. Linsalata M., Cavallini A., Di Leo A. Polyamine oxidase activity and polyamine levels in human colorectal cancer and in normal surrounding mucosa. Anticancer Res. 1997 Sep-Oct;17(5B):3757–3760. [PubMed] [Google Scholar]
  19. Matsui I., Wiegand L., Pegg A. E. Properties of spermidine N-acetyltransferase from livers of rats treated with carbon tetrachloride and its role in the conversion of spermidine into putrescine. J Biol Chem. 1981 Mar 10;256(5):2454–2459. [PubMed] [Google Scholar]
  20. McCloskey D. E., Coleman C. S., Pegg A. E. Properties and regulation of human spermidine/spermine N1-acetyltransferase stably expressed in Chinese hamster ovary cells. J Biol Chem. 1999 Mar 5;274(10):6175–6182. doi: 10.1074/jbc.274.10.6175. [DOI] [PubMed] [Google Scholar]
  21. Porter C. W., Ganis B., Libby P. R., Bergeron R. J. Correlations between polyamine analogue-induced increases in spermidine/spermine N1-acetyltransferase activity, polyamine pool depletion, and growth inhibition in human melanoma cell lines. Cancer Res. 1991 Jul 15;51(14):3715–3720. [PubMed] [Google Scholar]
  22. Quash G., Keolouangkhot T., Gazzolo L., Ripoll H., Saez S. Diamine oxidase and polyamine oxidase activities in normal and transformed cells. Biochem J. 1979 Jan 1;177(1):275–282. doi: 10.1042/bj1770275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rhodes Daniel R., Barrette Terrence R., Rubin Mark A., Ghosh Debashis, Chinnaiyan Arul M. Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res. 2002 Aug 1;62(15):4427–4433. [PubMed] [Google Scholar]
  24. Schreuder H. A., van der Laan J. M., Swarte M. B., Kalk K. H., Hol W. G., Drenth J. Crystal structure of the reduced form of p-hydroxybenzoate hydroxylase refined at 2.3 A resolution. Proteins. 1992 Oct;14(2):178–190. doi: 10.1002/prot.340140205. [DOI] [PubMed] [Google Scholar]
  25. Seiler N., Badolo L., Duranton B., Vincent F., Schneider Y., Gossé F., Raul F. Effect of the polyamine oxidase inactivator MDL 72527 on N(1)-(n-octanesulfonyl)spermine toxicity. Int J Biochem Cell Biol. 2000 Oct;32(10):1055–1068. doi: 10.1016/s1357-2725(00)00052-2. [DOI] [PubMed] [Google Scholar]
  26. Seiler N., Bolkenius F. N., Knödgen B., Mamont P. Polyamine oxidase in rat tissues. Biochim Biophys Acta. 1980 Oct;615(2):480–488. doi: 10.1016/0005-2744(80)90514-8. [DOI] [PubMed] [Google Scholar]
  27. Seiler N., Bolkenius F. N., Rennert O. M. Interconversion, catabolism and elimination of the polyamines. Med Biol. 1981 Dec;59(5-6):334–346. [PubMed] [Google Scholar]
  28. Seiler N., Douaud F., Renault J., Delcros J. G., Havouis R., Uriac P., Moulinoux J. P. Polyamine sulfonamides with NMDA antagonist properties are potent calmodulin antagonists and cytotoxic agents. Int J Biochem Cell Biol. 1998 Mar;30(3):393–406. doi: 10.1016/s1357-2725(97)00150-7. [DOI] [PubMed] [Google Scholar]
  29. Seiler N. Functions of polyamine acetylation. Can J Physiol Pharmacol. 1987 Oct;65(10):2024–2035. doi: 10.1139/y87-317. [DOI] [PubMed] [Google Scholar]
  30. Seiler N. Polyamine oxidase, properties and functions. Prog Brain Res. 1995;106:333–344. doi: 10.1016/s0079-6123(08)61229-7. [DOI] [PubMed] [Google Scholar]
  31. Takenoshita S., Matsuzaki S., Nakano G., Kimura H., Hoshi H., Shoda H., Nakamura T. Selective elevation of the N1-acetylspermidine level in human colorectal adenocarcinomas. Cancer Res. 1984 Feb;44(2):845–847. [PubMed] [Google Scholar]
  32. Tavladoraki P., Schininà M. E., Cecconi F., Di Agostino S., Manera F., Rea G., Mariottini P., Federico R., Angelini R. Maize polyamine oxidase: primary structure from protein and cDNA sequencing. FEBS Lett. 1998 Apr 10;426(1):62–66. doi: 10.1016/s0014-5793(98)00311-1. [DOI] [PubMed] [Google Scholar]
  33. Tsukada T., Furusako S., Maekawa S., Hibasami H., Nakashima K. Purification by affinity chromatography and characterization of porcine liver cytoplasmic polyamine oxidase. Int J Biochem. 1988;20(7):695–702. doi: 10.1016/0020-711x(88)90164-4. [DOI] [PubMed] [Google Scholar]
  34. Vujcic S., Halmekyto M., Diegelman P., Gan G., Kramer D. L., Janne J., Porter C. W. Effects of conditional overexpression of spermidine/spermine N1-acetyltransferase on polyamine pool dynamics, cell growth, and sensitivity to polyamine analogs. J Biol Chem. 2000 Dec 8;275(49):38319–38328. doi: 10.1074/jbc.M003270200. [DOI] [PubMed] [Google Scholar]
  35. Vujcic Slavoljub, Diegelman Paula, Bacchi Cyrus J., Kramer Debora L., Porter Carl W. Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem J. 2002 Nov 1;367(Pt 3):665–675. doi: 10.1042/BJ20020720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wallace H. M., Duthie J., Evans D. M., Lamond S., Nicoll K. M., Heys S. D. Alterations in polyamine catabolic enzymes in human breast cancer tissue. Clin Cancer Res. 2000 Sep;6(9):3657–3661. [PubMed] [Google Scholar]
  37. Wang Y., Devereux W., Stewart T. M., Casero R. A., Jr Cloning and characterization of human polyamine-modulated factor-1, a transcriptional cofactor that regulates the transcription of the spermidine/spermine N(1)-acetyltransferase gene. J Biol Chem. 1999 Jul 30;274(31):22095–22101. doi: 10.1074/jbc.274.31.22095. [DOI] [PubMed] [Google Scholar]
  38. Wang Y., Devereux W., Woster P. M., Stewart T. M., Hacker A., Casero R. A., Jr Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res. 2001 Jul 15;61(14):5370–5373. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES