Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 1;372(Pt 2):381–390. doi: 10.1042/BJ20021516

Haem and nitric oxide: synergism in the modulation of the endothelial haem oxygenase-1 pathway.

Roberta Foresti 1, Martha Hoque 1, Sandip Bains 1, Colin J Green 1, Roberto Motterlini 1
PMCID: PMC1223420  PMID: 12622689

Abstract

NO potently up-regulates vascular haem oxygenase-1 (HO-1), an inducible defensive protein that degrades haem to CO, iron and the antioxidant bilirubin. Since several pathological states are characterized by increased NO production and liberation of haem from haem-containing proteins, we examined how NO influences HO-1 induction mediated by haemin. Aortic endothelial cells treated with S-nitroso-N-acetylpenicillamine (SNAP), sodium nitroprusside (SNP) or diethylenetriamine-NONOate (DETA/NO) and haemin exhibited higher levels of haem oxygenase activity compared with cells exposed to NO donors or haemin alone. This was accompanied by a marked increase in bilirubin production and, notably, by a strong magnification of cellular haem uptake. A role for haem metabolites in modulating HO-1 expression by NO was assessed by exposing cells to SNAP, SNP or DETA/NO in medium derived from cells treated with haemin, which contained increased bilirubin levels. This treatment considerably potentiated HO-1 expression and haem oxygenase activity mediated by NO and the use of a haem oxygenase inhibitor abolished this effect. Both iron liberated during haem breakdown and the formation of nitroxyl anion from NO appeared to partially contribute to the amplifying phenomenon; in addition, medium from haemin-treated cells significantly augmented the release of NO by NO donors. Thus we have identified novel mechanisms related to the induction of HO-1 by NO indicating that the signalling actions of NO vary significantly in the presence of haem and haem metabolites, ultimately increasing the defensive abilities of the endothelium to counteract oxidative and nitrosative stress.

Full Text

The Full Text of this article is available as a PDF (205.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam J., Smith A. Receptor-mediated transport of heme by hemopexin regulates gene expression in mammalian cells. J Biol Chem. 1989 Oct 25;264(30):17637–17640. [PubMed] [Google Scholar]
  2. Balla G., Jacob H. S., Balla J., Rosenberg M., Nath K., Apple F., Eaton J. W., Vercellotti G. M. Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem. 1992 Sep 5;267(25):18148–18153. [PubMed] [Google Scholar]
  3. Balla G., Vercellotti G. M., Muller-Eberhard U., Eaton J., Jacob H. S. Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species. Lab Invest. 1991 May;64(5):648–655. [PubMed] [Google Scholar]
  4. Balla J., Jacob H. S., Balla G., Nath K., Eaton J. W., Vercellotti G. M. Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9285–9289. doi: 10.1073/pnas.90.20.9285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barañano D. E., Wolosker H., Bae B. I., Barrow R. K., Snyder S. H., Ferris C. D. A mammalian iron ATPase induced by iron. J Biol Chem. 2000 May 19;275(20):15166–15173. doi: 10.1074/jbc.275.20.15166. [DOI] [PubMed] [Google Scholar]
  6. Bauer M., Pannen B. H., Bauer I., Herzog C., Wanner G. A., Hanselmann R., Zhang J. X., Clemens M. G., Larsen R. Evidence for a functional link between stress response and vascular control in hepatic portal circulation. Am J Physiol. 1996 Nov;271(5 Pt 1):G929–G935. doi: 10.1152/ajpgi.1996.271.5.G929. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Clark J. E., Foresti R., Green C. J., Motterlini R. Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochem J. 2000 Jun 15;348(Pt 3):615–619. [PMC free article] [PubMed] [Google Scholar]
  9. Cooper C. E. Nitric oxide and iron proteins. Biochim Biophys Acta. 1999 May 5;1411(2-3):290–309. doi: 10.1016/s0005-2728(99)00021-3. [DOI] [PubMed] [Google Scholar]
  10. Ding Y., McCoubrey W. K., Jr, Maines M. D. Interaction of heme oxygenase-2 with nitric oxide donors. Is the oxygenase an intracellular 'sink' for NO? Eur J Biochem. 1999 Sep;264(3):854–861. doi: 10.1046/j.1432-1327.1999.00677.x. [DOI] [PubMed] [Google Scholar]
  11. Ferris C. D., Jaffrey S. R., Sawa A., Takahashi M., Brady S. D., Barrow R. K., Tysoe S. A., Wolosker H., Barañano D. E., Doré S. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat Cell Biol. 1999 Jul;1(3):152–157. doi: 10.1038/11072. [DOI] [PubMed] [Google Scholar]
  12. Foresti R., Clark J. E., Green C. J., Motterlini R. Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells. Involvement of superoxide and peroxynitrite anions. J Biol Chem. 1997 Jul 18;272(29):18411–18417. doi: 10.1074/jbc.272.29.18411. [DOI] [PubMed] [Google Scholar]
  13. Foresti R., Goatly H., Green C. J., Motterlini R. Role of heme oxygenase-1 in hypoxia-reoxygenation: requirement of substrate heme to promote cardioprotection. Am J Physiol Heart Circ Physiol. 2001 Nov;281(5):H1976–H1984. doi: 10.1152/ajpheart.2001.281.5.H1976. [DOI] [PubMed] [Google Scholar]
  14. Foresti R., Motterlini R. The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free Radic Res. 1999 Dec;31(6):459–475. doi: 10.1080/10715769900301031. [DOI] [PubMed] [Google Scholar]
  15. Foresti R., Sarathchandra P., Clark J. E., Green C. J., Motterlini R. Peroxynitrite induces haem oxygenase-1 in vascular endothelial cells: a link to apoptosis. Biochem J. 1999 May 1;339(Pt 3):729–736. [PMC free article] [PubMed] [Google Scholar]
  16. Galbraith R. A., Sassa S., Kappas A. Heme binding to murine erythroleukemia cells. Evidence for a heme receptor. J Biol Chem. 1985 Oct 5;260(22):12198–12202. [PubMed] [Google Scholar]
  17. Gardner P. R., Gardner A. M., Martin L. A., Salzman A. L. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10378–10383. doi: 10.1073/pnas.95.18.10378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jeney Viktória, Balla József, Yachie Akihiro, Varga Zsuzsa, Vercellotti Gregory M., Eaton John W., Balla György. Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002 Aug 1;100(3):879–887. doi: 10.1182/blood.v100.3.879. [DOI] [PubMed] [Google Scholar]
  19. Joshi M. S., Lancaster J. R., Jr, Liu X., Ferguson T. B., Jr In situ measurement of nitric oxide production in cardiac isografts and rejecting allografts by an electrochemical method. Nitric Oxide. 2001 Dec;5(6):561–565. doi: 10.1006/niox.2001.0369. [DOI] [PubMed] [Google Scholar]
  20. Juckett M., Zheng Y., Yuan H., Pastor T., Antholine W., Weber M., Vercellotti G. Heme and the endothelium. Effects of nitric oxide on catalytic iron and heme degradation by heme oxygenase. J Biol Chem. 1998 Sep 4;273(36):23388–23397. doi: 10.1074/jbc.273.36.23388. [DOI] [PubMed] [Google Scholar]
  21. Liu Y., Ortiz de Montellano P. R. Reaction intermediates and single turnover rate constants for the oxidation of heme by human heme oxygenase-1. J Biol Chem. 2000 Feb 25;275(8):5297–5307. doi: 10.1074/jbc.275.8.5297. [DOI] [PubMed] [Google Scholar]
  22. Maines M. D. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517–554. doi: 10.1146/annurev.pharmtox.37.1.517. [DOI] [PubMed] [Google Scholar]
  23. Majuri R., Gräsbeck R. Isolation of the haemopexin-haem receptor from pig liver cells. FEBS Lett. 1986 Apr 7;199(1):80–84. doi: 10.1016/0014-5793(86)81227-3. [DOI] [PubMed] [Google Scholar]
  24. McCoubrey W. K., Jr, Huang T. J., Maines M. D. Heme oxygenase-2 is a hemoprotein and binds heme through heme regulatory motifs that are not involved in heme catalysis. J Biol Chem. 1997 May 9;272(19):12568–12574. doi: 10.1074/jbc.272.19.12568. [DOI] [PubMed] [Google Scholar]
  25. McCoubrey W. K., Jr, Huang T. J., Maines M. D. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem. 1997 Jul 15;247(2):725–732. doi: 10.1111/j.1432-1033.1997.00725.x. [DOI] [PubMed] [Google Scholar]
  26. Membrillo-Hernández J., Coopamah M. D., Anjum M. F., Stevanin T. M., Kelly A., Hughes M. N., Poole R. K. The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a "Nitric oxide Releaser," and paraquat and is essential for transcriptional responses to oxidative stress. J Biol Chem. 1999 Jan 8;274(2):748–754. doi: 10.1074/jbc.274.2.748. [DOI] [PubMed] [Google Scholar]
  27. Motterlini R., Foresti R., Bassi R., Calabrese V., Clark J. E., Green C. J. Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric-oxide synthase and S-nitrosothiols. J Biol Chem. 2000 May 5;275(18):13613–13620. doi: 10.1074/jbc.275.18.13613. [DOI] [PubMed] [Google Scholar]
  28. Motterlini R., Foresti R., Intaglietta M., Winslow R. M. NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. Am J Physiol. 1996 Jan;270(1 Pt 2):H107–H114. doi: 10.1152/ajpheart.1996.270.1.H107. [DOI] [PubMed] [Google Scholar]
  29. Motterlini R., Foresti R., Vandegriff K., Intaglietta M., Winslow R. M. Oxidative-stress response in vascular endothelial cells exposed to acellular hemoglobin solutions. Am J Physiol. 1995 Aug;269(2 Pt 2):H648–H655. doi: 10.1152/ajpheart.1995.269.2.H648. [DOI] [PubMed] [Google Scholar]
  30. Motterlini Roberto, Green Colin J., Foresti Roberta. Regulation of heme oxygenase-1 by redox signals involving nitric oxide. Antioxid Redox Signal. 2002 Aug;4(4):615–624. doi: 10.1089/15230860260220111. [DOI] [PubMed] [Google Scholar]
  31. Naughton Patrick, Foresti Roberta, Bains Sandip K., Hoque Martha, Green Colin J., Motterlini Roberto. Induction of heme oxygenase 1 by nitrosative stress. A role for nitroxyl anion. J Biol Chem. 2002 Aug 22;277(43):40666–40674. doi: 10.1074/jbc.M203863200. [DOI] [PubMed] [Google Scholar]
  32. Otterbein L. E., Bach F. H., Alam J., Soares M., Tao Lu H., Wysk M., Davis R. J., Flavell R. A., Choi A. M. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000 Apr;6(4):422–428. doi: 10.1038/74680. [DOI] [PubMed] [Google Scholar]
  33. Patel R. P., Moellering D., Murphy-Ullrich J., Jo H., Beckman J. S., Darley-Usmar V. M. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis. Free Radic Biol Med. 2000 Jun 15;28(12):1780–1794. doi: 10.1016/s0891-5849(00)00235-5. [DOI] [PubMed] [Google Scholar]
  34. Poss K. D., Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10925–10930. doi: 10.1073/pnas.94.20.10925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sawle P., Foresti R., Green C. J., Motterlini R. Homocysteine attenuates endothelial haem oxygenase-1 induction by nitric oxide (NO) and hypoxia. FEBS Lett. 2001 Nov 23;508(3):403–406. doi: 10.1016/s0014-5793(01)03117-9. [DOI] [PubMed] [Google Scholar]
  36. Stamler J. S., Hausladen A. Oxidative modifications in nitrosative stress. Nat Struct Biol. 1998 Apr;5(4):247–249. doi: 10.1038/nsb0498-247. [DOI] [PubMed] [Google Scholar]
  37. Sun J., Wilks A., Ortiz de Montellano P. R., Loehr T. M. Resonance Raman and EPR spectroscopic studies on heme-heme oxygenase complexes. Biochemistry. 1993 Dec 28;32(51):14151–14157. doi: 10.1021/bi00214a012. [DOI] [PubMed] [Google Scholar]
  38. Suzuki H., Kanamaru K., Tsunoda H., Inada H., Kuroki M., Sun H., Waga S., Tanaka T. Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. J Clin Invest. 1999 Jul;104(1):59–66. doi: 10.1172/JCI5357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Szabó C. Alterations in nitric oxide production in various forms of circulatory shock. New Horiz. 1995 Feb;3(1):2–32. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES