Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 1;372(Pt 2):603–609. doi: 10.1042/BJ20030076

Characterization of the nutrient-sensing response unit in the human asparagine synthetase promoter.

Can Zhong 1, Chin Chen 1, Michael S Kilberg 1
PMCID: PMC1223424  PMID: 12628003

Abstract

Transcription from the human asparagine synthetase (A.S.) gene is increased in response to either amino acid (amino acid response) or glucose (endoplasmic reticulum stress response) deprivation. These two independent nutrient-sensing pathways converge on the same set of genomic cis -elements, referred to as nutrient sensing-response elements (NSREs) 1 and 2, within the A.S. promoter. The present report uses single-nucleotide mutagenesis to confirm that both NSRE-1 and NSRE-2 are absolutely required for gene activation and to identify the boundaries of each binding site. The core sequence of the NSRE-1 site is contained within nucleotides -68 to -60 and the NSRE-2 core sequence is within nucleotides -48 to -43. Through insertion or deletion of 5-10 nucleotides in the intervening sequence between NSRE-1 and NSRE-2, transient transfection studies with an A.S. promoter/reporter gene construct showed that the 11 bp distance between these two elements is critical. These results document that the optimal configuration is with both binding sites on the same side of the DNA helix, only one helical turn away from each other and the data provide support for the hypothesis that a larger multi-protein complex exists between the binding proteins for NSRE-1 and NSRE-2. The data also illustrate that the combination of NSRE-1 and NSRE-2, referred to as the nutrient-sensing response unit (NSRU), has enhancer activity in that it functions in an orientation- and position-independent manner, and conveys nutrient-dependent transcriptional control to a heterologous promoter.

Full Text

The Full Text of this article is available as a PDF (305.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrulis I. L., Hatfield G. W., Arfin S. M. Asparaginyl-tRNA aminoacylation levels and asparagine synthetase expression in cultured Chinese hamster ovary cells. J Biol Chem. 1979 Nov 10;254(21):10629–10633. [PMC free article] [PubMed] [Google Scholar]
  2. Arfin S. M., Simpson D. R., Chiang C. S., Andrulis I. L., Hatfield G. W. A role for asparaginyl-tRNA in the regulation of asparagine synthetase in a mammalian cell line. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2367–2369. doi: 10.1073/pnas.74.6.2367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aslanian A. M., Fletcher B. S., Kilberg M. S. Asparagine synthetase expression alone is sufficient to induce l-asparaginase resistance in MOLT-4 human leukaemia cells. Biochem J. 2001 Jul 1;357(Pt 1):321–328. doi: 10.1042/0264-6021:3570321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbosa-Tessmann I. P., Chen C., Zhong C., Schuster S. M., Nick H. S., Kilberg M. S. Activation of the unfolded protein response pathway induces human asparagine synthetase gene expression. J Biol Chem. 1999 Oct 29;274(44):31139–31144. doi: 10.1074/jbc.274.44.31139. [DOI] [PubMed] [Google Scholar]
  5. Barbosa-Tessmann I. P., Chen C., Zhong C., Siu F., Schuster S. M., Nick H. S., Kilberg M. S. Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. J Biol Chem. 2000 Sep 1;275(35):26976–26985. doi: 10.1074/jbc.M000004200. [DOI] [PubMed] [Google Scholar]
  6. Barbosa-Tessmann I. P., Pineda V. L., Nick H. S., Schuster S. M., Kilberg M. S. Transcriptional regulation of the human asparagine synthetase gene by carbohydrate availability. Biochem J. 1999 Apr 1;339(Pt 1):151–158. [PMC free article] [PubMed] [Google Scholar]
  7. Bruhat Alain, Averous Julien, Carraro Valérie, Zhong Can, Reimold Andreas M., Kilberg Michael S., Fafournoux Pierre. Differences in the molecular mechanisms involved in the transcriptional activation of the CHOP and asparagine synthetase genes in response to amino acid deprivation or activation of the unfolded protein response. J Biol Chem. 2002 Sep 25;277(50):48107–48114. doi: 10.1074/jbc.M206149200. [DOI] [PubMed] [Google Scholar]
  8. Fafournoux P., Bruhat A., Jousse C. Amino acid regulation of gene expression. Biochem J. 2000 Oct 1;351(Pt 1):1–12. doi: 10.1042/0264-6021:3510001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fawcett T. W., Martindale J. L., Guyton K. Z., Hai T., Holbrook N. J. Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J. 1999 Apr 1;339(Pt 1):135–141. [PMC free article] [PubMed] [Google Scholar]
  10. Gong S. S., Guerrini L., Basilico C. Regulation of asparagine synthetase gene expression by amino acid starvation. Mol Cell Biol. 1991 Dec;11(12):6059–6066. doi: 10.1128/mcb.11.12.6059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guerrini L., Gong S. S., Mangasarian K., Basilico C. Cis- and trans-acting elements involved in amino acid regulation of asparagine synthetase gene expression. Mol Cell Biol. 1993 Jun;13(6):3202–3212. doi: 10.1128/mcb.13.6.3202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hutson R. G., Kilberg M. S. Cloning of rat asparagine synthetase and specificity of the amino acid-dependent control of its mRNA content. Biochem J. 1994 Dec 15;304(Pt 3):745–750. doi: 10.1042/bj3040745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jousse C., Bruhat A., Ferrara M., Fafournoux P. Evidence for multiple signaling pathways in the regulation of gene expression by amino acids in human cell lines. J Nutr. 2000 Jun;130(6):1555–1560. doi: 10.1093/jn/130.6.1555. [DOI] [PubMed] [Google Scholar]
  14. Kilberg Michael S., Barbosa-Tessmann Ione P. Genomic sequences necessary for transcriptional activation by amino acid deprivation of mammalian cells. J Nutr. 2002 Jul;132(7):1801–1804. doi: 10.1093/jn/132.7.1801. [DOI] [PubMed] [Google Scholar]
  15. Leung-Pineda Van, Kilberg Michael S. Role of Sp1 and Sp3 in the nutrient-regulated expression of the human asparagine synthetase gene. J Biol Chem. 2002 Feb 26;277(19):16585–16591. doi: 10.1074/jbc.M110972200. [DOI] [PubMed] [Google Scholar]
  16. Parker R., Phan T., Baumeister P., Roy B., Cheriyath V., Roy A. L., Lee A. S. Identification of TFII-I as the endoplasmic reticulum stress response element binding factor ERSF: its autoregulation by stress and interaction with ATF6. Mol Cell Biol. 2001 May;21(9):3220–3233. doi: 10.1128/MCB.21.9.3220-3233.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Patil C., Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol. 2001 Jun;13(3):349–355. doi: 10.1016/s0955-0674(00)00219-2. [DOI] [PubMed] [Google Scholar]
  18. Roy B., Lee A. S. The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res. 1999 Mar 15;27(6):1437–1443. doi: 10.1093/nar/27.6.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Selden R. F., Howie K. B., Rowe M. E., Goodman H. M., Moore D. D. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol Cell Biol. 1986 Sep;6(9):3173–3179. doi: 10.1128/mcb.6.9.3173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Siu F., Chen C., Zhong C., Kilberg M. S. CCAAT/enhancer-binding protein-beta is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem. 2001 Oct 24;276(51):48100–48107. doi: 10.1074/jbc.M109533200. [DOI] [PubMed] [Google Scholar]
  21. Siu Fai, Bain Perry J., LeBlanc-Chaffin Rene, Chen Hong, Kilberg Michael S. ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem. 2002 Apr 17;277(27):24120–24127. doi: 10.1074/jbc.M201959200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES