Abstract
HFE, the protein mutated in hereditary haemochromatosis type 1, is known to interact with the transferrin receptor (TfR) on the cell surface and during endocytosis [Gross, Irrinki, Feder and Enns (1998) J. Biol. Chem. 273, 22068-22074; Roy, Penny, Feder and Enns (1999) J. Biol. Chem. 274, 9022-9028]. However, whether they are capable of interacting with each other once inside the cell is not known. In the present study we present several lines of evidence that they do interact in endosome compartments. Cells expressing a chimaera of HFE protein with the cytoplasmic domain of lysosomal-associated membrane protein 1 (LAMP1) in place of its own (HFE-LAMP) show a decrease in the half-life of the TfR. This implies that the interaction between HFE and TfR in endosomes targets the TfR to lysosomal compartments. The interaction between TfR and HFE-LAMP was confirmed by immunoprecipitation, in addition to immunofluorescence studies. Addition of transferrin (Tf) to HFE-LAMP-expressing cells competes with HFE for binding to the TfR, thereby increasing the half-life of TfR and confirming that the HFE-LAMP-TfR complex reaches the cell surface prior to entering the endosomal vesicles and trafficking to the lysosome. These results raise the possibility that interaction of HFE and TfR in intracellular vesicles may play an important role in determining the function of HFE in iron homoeostasis, which is still unknown. Analysis of endosomal pH and the iron content of internalized Tf indicated that HFE does not appear to alter the unloading of iron from Tf in the endosome.
Full Text
The Full Text of this article is available as a PDF (254.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bali P. K., Aisen P. Receptor-induced switch in site-site cooperativity during iron release by transferrin. Biochemistry. 1992 Apr 28;31(16):3963–3967. doi: 10.1021/bi00131a011. [DOI] [PubMed] [Google Scholar]
- Bali P. K., Aisen P. Receptor-modulated iron release from transferrin: differential effects on N- and C-terminal sites. Biochemistry. 1991 Oct 15;30(41):9947–9952. doi: 10.1021/bi00105a019. [DOI] [PubMed] [Google Scholar]
- Bali P. K., Zak O., Aisen P. A new role for the transferrin receptor in the release of iron from transferrin. Biochemistry. 1991 Jan 15;30(2):324–328. doi: 10.1021/bi00216a003. [DOI] [PubMed] [Google Scholar]
- Ben-Arieh S. V., Zimerman B., Smorodinsky N. I., Yaacubovicz M., Schechter C., Bacik I., Gibbs J., Bennink J. R., Yewdell J. W., Coligan J. E. Human cytomegalovirus protein US2 interferes with the expression of human HFE, a nonclassical class I major histocompatibility complex molecule that regulates iron homeostasis. J Virol. 2001 Nov;75(21):10557–10562. doi: 10.1128/JVI.75.21.10557-10562.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corsi B., Levi S., Cozzi A., Corti A., Altimare D., Albertini A., Arosio P. Overexpression of the hereditary hemochromatosis protein, HFE, in HeLa cells induces and iron-deficient phenotype. FEBS Lett. 1999 Oct 22;460(1):149–152. doi: 10.1016/s0014-5793(99)01330-7. [DOI] [PubMed] [Google Scholar]
- Dunn K. W., Park J., Semrad C. E., Gelman D. L., Shevell T., McGraw T. E. Regulation of endocytic trafficking and acidification are independent of the cystic fibrosis transmembrane regulator. J Biol Chem. 1994 Feb 18;269(7):5336–5345. [PubMed] [Google Scholar]
- Enns C. A., Mulkins M. A., Sussman H., Root B. Modulation of the transferrin receptor during DMSO-induced differentiation in HL-60 cells. Exp Cell Res. 1988 Jan;174(1):89–97. doi: 10.1016/0014-4827(88)90144-9. [DOI] [PubMed] [Google Scholar]
- Feder J. N., Gnirke A., Thomas W., Tsuchihashi Z., Ruddy D. A., Basava A., Dormishian F., Domingo R., Jr, Ellis M. C., Fullan A. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996 Aug;13(4):399–408. doi: 10.1038/ng0896-399. [DOI] [PubMed] [Google Scholar]
- Feder J. N., Penny D. M., Irrinki A., Lee V. K., Lebrón J. A., Watson N., Tsuchihashi Z., Sigal E., Bjorkman P. J., Schatzman R. C. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1472–1477. doi: 10.1073/pnas.95.4.1472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gossen M., Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547–5551. doi: 10.1073/pnas.89.12.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross C. N., Irrinki A., Feder J. N., Enns C. A. Co-trafficking of HFE, a nonclassical major histocompatibility complex class I protein, with the transferrin receptor implies a role in intracellular iron regulation. J Biol Chem. 1998 Aug 21;273(34):22068–22074. doi: 10.1074/jbc.273.34.22068. [DOI] [PubMed] [Google Scholar]
- Guarnieri F. G., Arterburn L. M., Penno M. B., Cha Y., August J. T. The motif Tyr-X-X-hydrophobic residue mediates lysosomal membrane targeting of lysosome-associated membrane protein 1. J Biol Chem. 1993 Jan 25;268(3):1941–1946. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lebrón J. A., Bennett M. J., Vaughn D. E., Chirino A. J., Snow P. M., Mintier G. A., Feder J. N., Bjorkman P. J. Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell. 1998 Apr 3;93(1):111–123. doi: 10.1016/s0092-8674(00)81151-4. [DOI] [PubMed] [Google Scholar]
- Lebrón J. A., Bjorkman P. J. The transferrin receptor binding site on HFE, the class I MHC-related protein mutated in hereditary hemochromatosis. J Mol Biol. 1999 Jun 18;289(4):1109–1118. doi: 10.1006/jmbi.1999.2842. [DOI] [PubMed] [Google Scholar]
- Lebrón J. A., West A. P., Jr, Bjorkman P. J. The hemochromatosis protein HFE competes with transferrin for binding to the transferrin receptor. J Mol Biol. 1999 Nov 19;294(1):239–245. doi: 10.1006/jmbi.1999.3252. [DOI] [PubMed] [Google Scholar]
- Makey D. G., Seal U. S. The detection of four molecular forms of human transferrin during the iron binding process. Biochim Biophys Acta. 1976 Nov 26;453(1):250–256. doi: 10.1016/0005-2795(76)90270-1. [DOI] [PubMed] [Google Scholar]
- Mason A., He Q. Y., Tam B., MacGillivray R. A., Woodworth R. Mutagenesis of the aspartic acid ligands in human serum transferrin: lobe-lobe interaction and conformation as revealed by antibody, receptor-binding and iron-release studies. Biochem J. 1998 Feb 15;330(Pt 1):35–40. doi: 10.1042/bj3300035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riedel H. D., Muckenthaler M. U., Gehrke S. G., Mohr I., Brennan K., Herrmann T., Fitscher B. A., Hentze M. W., Stremmel W. HFE downregulates iron uptake from transferrin and induces iron-regulatory protein activity in stably transfected cells. Blood. 1999 Dec 1;94(11):3915–3921. [PubMed] [Google Scholar]
- Roy C. N., Carlson E. J., Anderson E. L., Basava A., Starnes S. M., Feder J. N., Enns C. A. Interactions of the ectodomain of HFE with the transferrin receptor are critical for iron homeostasis in cells. FEBS Lett. 2000 Nov 10;484(3):271–274. doi: 10.1016/s0014-5793(00)02173-6. [DOI] [PubMed] [Google Scholar]
- Roy C. N., Penny D. M., Feder J. N., Enns C. A. The hereditary hemochromatosis protein, HFE, specifically regulates transferrin-mediated iron uptake in HeLa cells. J Biol Chem. 1999 Mar 26;274(13):9022–9028. doi: 10.1074/jbc.274.13.9022. [DOI] [PubMed] [Google Scholar]
- Roy Cindy N., Blemings Kenneth P., Deck Kathryn M., Davies Paige S., Anderson Emily L., Eisenstein Richard S., Enns Caroline A. Increased IRP1 and IRP2 RNA binding activity accompanies a reduction of the labile iron pool in HFE-expressing cells. J Cell Physiol. 2002 Feb;190(2):218–226. doi: 10.1002/jcp.10056. [DOI] [PubMed] [Google Scholar]
- Rutledge E. A., Mikoryak C. A., Draper R. K. Turnover of the transferrin receptor is not influenced by removing most of the extracellular domain. J Biol Chem. 1991 Nov 5;266(31):21125–21130. [PubMed] [Google Scholar]
- Rutledge E. A., Root B. J., Lucas J. J., Enns C. A. Elimination of the O-linked glycosylation site at Thr 104 results in the generation of a soluble human-transferrin receptor. Blood. 1994 Jan 15;83(2):580–586. [PubMed] [Google Scholar]
- Salter-Cid L., Brunmark A., Li Y., Leturcq D., Peterson P. A., Jackson M. R., Yang Y. Transferrin receptor is negatively modulated by the hemochromatosis protein HFE: implications for cellular iron homeostasis. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5434–5439. doi: 10.1073/pnas.96.10.5434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sipe D. M., Murphy R. F. Binding to cellular receptors results in increased iron release from transferrin at mildly acidic pH. J Biol Chem. 1991 May 5;266(13):8002–8007. [PubMed] [Google Scholar]
- Snider M. D., Rogers O. C. Intracellular movement of cell surface receptors after endocytosis: resialylation of asialo-transferrin receptor in human erythroleukemia cells. J Cell Biol. 1985 Mar;100(3):826–834. doi: 10.1083/jcb.100.3.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward J. H., Kushner J. P., Kaplan J. Regulation of HeLa cell transferrin receptors. J Biol Chem. 1982 Sep 10;257(17):10317–10323. [PubMed] [Google Scholar]
- Warren R. A., Green F. A., Enns C. A. Saturation of the endocytic pathway for the transferrin receptor does not affect the endocytosis of the epidermal growth factor receptor. J Biol Chem. 1997 Jan 24;272(4):2116–2121. doi: 10.1074/jbc.272.4.2116. [DOI] [PubMed] [Google Scholar]
- Warren R. A., Green F. A., Stenberg P. E., Enns C. A. Distinct saturable pathways for the endocytosis of different tyrosine motifs. J Biol Chem. 1998 Jul 3;273(27):17056–17063. doi: 10.1074/jbc.273.27.17056. [DOI] [PubMed] [Google Scholar]
- West A. P., Jr, Giannetti A. M., Herr A. B., Bennett M. J., Nangiana J. S., Pierce J. R., Weiner L. P., Snow P. M., Bjorkman P. J. Mutational analysis of the transferrin receptor reveals overlapping HFE and transferrin binding sites. J Mol Biol. 2001 Oct 19;313(2):385–397. doi: 10.1006/jmbi.2001.5048. [DOI] [PubMed] [Google Scholar]
- Williams A. M., Enns C. A. A mutated transferrin receptor lacking asparagine-linked glycosylation sites shows reduced functionality and an association with binding immunoglobulin protein. J Biol Chem. 1991 Sep 15;266(26):17648–17654. [PubMed] [Google Scholar]
- Yajima H., Sakajiri T., Kikuchi T., Morita M., Ishii T. Molecular modeling of human serum transferrin for rationalizing the changes in its physicochemical properties induced by iron binding. Implication of the mechanism of binding to its receptor. J Protein Chem. 2000 Apr;19(3):215–223. doi: 10.1023/a:1007059820834. [DOI] [PubMed] [Google Scholar]
- Yamashiro D. J., Maxfield F. R. Acidification of endocytic compartments and the intracellular pathways of ligands and receptors. J Cell Biochem. 1984;26(4):231–246. doi: 10.1002/jcb.240260404. [DOI] [PubMed] [Google Scholar]
- Young S. P., Bomford A., Williams R. The effect of the iron saturation of transferrin on its binding and uptake by rabbit reticulocytes. Biochem J. 1984 Apr 15;219(2):505–510. doi: 10.1042/bj2190505. [DOI] [PMC free article] [PubMed] [Google Scholar]