Abstract
Whereas dopamine agonists are known to provide symptomatic benefits for Parkinson's disease, recent clinical trials suggest that they might also be neuroprotective. Laboratory studies demonstrate that dopamine agonists can provide neuroprotective effects in a number of model systems, but the role of receptor-mediated signalling in these effects is controversial. We find that dopamine agonists have robust, concentration-dependent anti-apoptotic activity in PC12 cells that stably express human D(2L) receptors from cell death due to H(2)O(2) or trophic withdrawal and that the protective effects are abolished in the presence of D(2)-receptor antagonists. D(2) agonists are also neuroprotective in the nigral dopamine cell line SN4741, which express endogenous D(2) receptors, whereas no anti-apoptotic activity is observed in native PC12 cells, which do not express detectable D(2) receptors. Notably, the agonists studied differ in their relative efficacy to mediate anti-apoptotic effects and in their capacity to stimulate [(35)S]guanosine 5'-[gamma-thio]triphosphate ([(35)S]GTP[S]) binding, an indicator of G-protein activation. Studies with inhibitors of phosphoinositide 3-kinase (PI 3-kinase), extracellular-signal-regulated kinase or p38 mitogen-activated protein kinase indicate that the PI 3-kinase pathway is required for D(2) receptor-mediated cell survival. These studies indicate that certain dopamine agonists can complex with D(2) receptors to preferentially transactivate neuroprotective signalling pathways and to mediate increased cell survival.
Full Text
The Full Text of this article is available as a PDF (188.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anastasiadis P. Z., Jiang H., Bezin L., Kuhn D. M., Levine R. A. Tetrahydrobiopterin enhances apoptotic PC12 cell death following withdrawal of trophic support. J Biol Chem. 2000 Dec 21;276(12):9050–9058. doi: 10.1074/jbc.M006570200. [DOI] [PubMed] [Google Scholar]
- Blum D., Torch S., Lambeng N., Nissou M., Benabid A. L., Sadoul R., Verna J. M. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol. 2001 Oct;65(2):135–172. doi: 10.1016/s0301-0082(01)00003-x. [DOI] [PubMed] [Google Scholar]
- Brunt E. R., Brooks D. J., Korczyn A. D., Montastruc J-L, Stocchi F., 043 Study Group A six-month multicentre, double-blind, bromocriptine-controlled study of the safety and efficacy of ropinirole in the treatment of patients with Parkinson's disease not optimally controlled by L-dopa. J Neural Transm (Vienna) 2002 Apr;109(4):489–502. doi: 10.1007/s007020200040. [DOI] [PubMed] [Google Scholar]
- Calne D. B., Burton K., Beckman J., Martin W. R. Dopamine agonists in Parkinson's disease. Can J Neurol Sci. 1984 Feb;11(1 Suppl):221–224. doi: 10.1017/s0317167100046448. [DOI] [PubMed] [Google Scholar]
- Cao W., Luttrell L. M., Medvedev A. V., Pierce K. L., Daniel K. W., Dixon T. M., Lefkowitz R. J., Collins S. Direct binding of activated c-Src to the beta 3-adrenergic receptor is required for MAP kinase activation. J Biol Chem. 2000 Dec 8;275(49):38131–38134. doi: 10.1074/jbc.C000592200. [DOI] [PubMed] [Google Scholar]
- Cassarino D. S., Fall C. P., Smith T. S., Bennett J. P., Jr Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion. J Neurochem. 1998 Jul;71(1):295–301. doi: 10.1046/j.1471-4159.1998.71010295.x. [DOI] [PubMed] [Google Scholar]
- Chun H. S., Gibson G. E., DeGiorgio L. A., Zhang H., Kidd V. J., Son J. H. Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism. J Neurochem. 2001 Feb;76(4):1010–1021. doi: 10.1046/j.1471-4159.2001.00096.x. [DOI] [PubMed] [Google Scholar]
- Cordeaux Y., Nickolls S. A., Flood L. A., Graber S. G., Strange P. G. Agonist regulation of D(2) dopamine receptor/G protein interaction. Evidence for agonist selection of G protein subtype. J Biol Chem. 2001 May 21;276(31):28667–28675. doi: 10.1074/jbc.M008644200. [DOI] [PubMed] [Google Scholar]
- Eberhardt O., Coelln R. V., Kugler S., Lindenau J., Rathke-Hartlieb S., Gerhardt E., Haid S., Isenmann S., Gravel C., Srinivasan A. Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J Neurosci. 2000 Dec 15;20(24):9126–9134. doi: 10.1523/JNEUROSCI.20-24-09126.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuda T., Watabe K., Tanaka J. Effects of bromocriptine and/or L-DOPA on neurons in substantia nigra of MPTP-treated C57BL/6 mice. Brain Res. 1996 Jul 29;728(2):274–276. doi: 10.1016/0006-8993(96)00559-8. [DOI] [PubMed] [Google Scholar]
- Gassen M., Gross A., Youdim M. B. Apomorphine enantiomers protect cultured pheochromocytoma (PC12) cells from oxidative stress induced by H2O2 and 6-hydroxydopamine. Mov Disord. 1998 Jul;13(4):661–667. doi: 10.1002/mds.870130409. [DOI] [PubMed] [Google Scholar]
- Grandy D. K., Marchionni M. A., Makam H., Stofko R. E., Alfano M., Frothingham L., Fischer J. B., Burke-Howie K. J., Bunzow J. R., Server A. C. Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9762–9766. doi: 10.1073/pnas.86.24.9762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall R. A., Premont R. T., Chow C. W., Blitzer J. T., Pitcher J. A., Claing A., Stoffel R. H., Barak L. S., Shenolikar S., Weinman E. J. The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature. 1998 Apr 9;392(6676):626–630. doi: 10.1038/33458. [DOI] [PubMed] [Google Scholar]
- Han B. H., Holtzman D. M. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci. 2000 Aug 1;20(15):5775–5781. doi: 10.1523/JNEUROSCI.20-15-05775.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartmann A., Hirsch E. C. Parkinson's disease. The apoptosis hypothesis revisited. Adv Neurol. 2001;86:143–153. [PubMed] [Google Scholar]
- Hartmann A., Hunot S., Michel P. P., Muriel M. P., Vyas S., Faucheux B. A., Mouatt-Prigent A., Turmel H., Srinivasan A., Ruberg M. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2875–2880. doi: 10.1073/pnas.040556597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honig L. S., Rosenberg R. N. Apoptosis and neurologic disease. Am J Med. 2000 Mar;108(4):317–330. doi: 10.1016/s0002-9343(00)00291-6. [DOI] [PubMed] [Google Scholar]
- Iida M., Miyazaki I., Tanaka K., Kabuto H., Iwata-Ichikawa E., Ogawa N. Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist. Brain Res. 1999 Aug 14;838(1-2):51–59. doi: 10.1016/s0006-8993(99)01688-1. [DOI] [PubMed] [Google Scholar]
- Ishige K., Chen Q., Sagara Y., Schubert D. The activation of dopamine D4 receptors inhibits oxidative stress-induced nerve cell death. J Neurosci. 2001 Aug 15;21(16):6069–6076. doi: 10.1523/JNEUROSCI.21-16-06069.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenner P., Olanow C. W. Understanding cell death in Parkinson's disease. Ann Neurol. 1998 Sep;44(3 Suppl 1):S72–S84. doi: 10.1002/ana.410440712. [DOI] [PubMed] [Google Scholar]
- Kakimura J., Kitamura Y., Takata K., Kohno Y., Nomura Y., Taniguchi T. Release and aggregation of cytochrome c and alpha-synuclein are inhibited by the antiparkinsonian drugs, talipexole and pramipexole. Eur J Pharmacol. 2001 Apr 6;417(1-2):59–67. doi: 10.1016/s0014-2999(01)00902-5. [DOI] [PubMed] [Google Scholar]
- Kenakin T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol Sci. 1995 Jul;16(7):232–238. doi: 10.1016/s0165-6147(00)89032-x. [DOI] [PubMed] [Google Scholar]
- Kihara Takeshi, Shimohama Shun, Sawada Hideyuki, Honda Kazuhiro, Nakamizo Tomoki, Kanki Rie, Yamashita Hiroshi, Akaike Akinori. Protective effect of dopamine D2 agonists in cortical neurons via the phosphatidylinositol 3 kinase cascade. J Neurosci Res. 2002 Nov 1;70(3):274–282. doi: 10.1002/jnr.10426. [DOI] [PubMed] [Google Scholar]
- Kitamura Y., Kosaka T., Kakimura J. I., Matsuoka Y., Kohno Y., Nomura Y., Taniguchi T. Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol Pharmacol. 1998 Dec;54(6):1046–1054. [PubMed] [Google Scholar]
- Le W. D., Jankovic J., Xie W., Appel S. H. Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection. J Neural Transm (Vienna) 2000;107(10):1165–1173. doi: 10.1007/s007020070030. [DOI] [PubMed] [Google Scholar]
- Lotharius J., O'Malley K. L. The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem. 2000 Dec 8;275(49):38581–38588. doi: 10.1074/jbc.M005385200. [DOI] [PubMed] [Google Scholar]
- Mattson M. P. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 2000 Nov;1(2):120–129. doi: 10.1038/35040009. [DOI] [PubMed] [Google Scholar]
- Mitchell R., McCulloch D., Lutz E., Johnson M., MacKenzie C., Fennell M., Fink G., Zhou W., Sealfon S. C. Rhodopsin-family receptors associate with small G proteins to activate phospholipase D. Nature. 1998 Mar 26;392(6674):411–414. doi: 10.1038/32937. [DOI] [PubMed] [Google Scholar]
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
- Olanow C. W., Jenner P., Brooks D. Dopamine agonists and neuroprotection in Parkinson's disease. Ann Neurol. 1998 Sep;44(3 Suppl 1):S167–S174. doi: 10.1002/ana.410440725. [DOI] [PubMed] [Google Scholar]
- Rascol O., Brooks D. J., Korczyn A. D., De Deyn P. P., Clarke C. E., Lang A. E. A five-year study of the incidence of dyskinesia in patients with early Parkinson's disease who were treated with ropinirole or levodopa. N Engl J Med. 2000 May 18;342(20):1484–1491. doi: 10.1056/NEJM200005183422004. [DOI] [PubMed] [Google Scholar]
- Sawada H., Ibi M., Kihara T., Urushitani M., Akaike A., Kimura J., Shimohama S. Dopamine D2-type agonists protect mesencephalic neurons from glutamate neurotoxicity: mechanisms of neuroprotective treatment against oxidative stress. Ann Neurol. 1998 Jul;44(1):110–119. doi: 10.1002/ana.410440117. [DOI] [PubMed] [Google Scholar]
- Sethy V. H., Wu H., Oostveen J. A., Hall E. D. Neuroprotective effects of the dopamine agonists pramipexole and bromocriptine in 3-acetylpyridine-treated rats. Brain Res. 1997 Apr 18;754(1-2):181–186. doi: 10.1016/s0006-8993(97)00075-9. [DOI] [PubMed] [Google Scholar]
- Shearman M. S., Ragan C. I., Iversen L. L. Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1470–1474. doi: 10.1073/pnas.91.4.1470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Son J. H., Chun H. S., Joh T. H., Cho S., Conti B., Lee J. W. Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J Neurosci. 1999 Jan 1;19(1):10–20. doi: 10.1523/JNEUROSCI.19-01-00010.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takashima H., Tsujihata M., Kishikawa M., Freed W. J. Bromocriptine protects dopaminergic neurons from levodopa-induced toxicity by stimulating D(2)receptors. Exp Neurol. 1999 Sep;159(1):98–104. doi: 10.1006/exnr.1999.7122. [DOI] [PubMed] [Google Scholar]
- Tanaka M., Sotomatsu A., Yoshida T., Hirai S. Inhibitory effects of bromocriptine on phospholipid peroxidation induced by dopa and iron. Neurosci Lett. 1995 Jan 2;183(1-2):116–119. doi: 10.1016/0304-3940(94)11128-6. [DOI] [PubMed] [Google Scholar]
- Tatton N. A., Kish S. J. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience. 1997 Apr;77(4):1037–1048. doi: 10.1016/s0306-4522(96)00545-3. [DOI] [PubMed] [Google Scholar]
- Zou L., Jankovic J., Rowe D. B., Xie W., Appel S. H., Le W. Neuroprotection by pramipexole against dopamine- and levodopa-induced cytotoxicity. Life Sci. 1999;64(15):1275–1285. doi: 10.1016/s0024-3205(99)00062-4. [DOI] [PubMed] [Google Scholar]
- Zou L., Xu J., Jankovic J., He Y., Appel S. H., Le W. Pramipexole inhibits lipid peroxidation and reduces injury in the substantia nigra induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice. Neurosci Lett. 2000 Mar 10;281(2-3):167–170. doi: 10.1016/s0304-3940(00)00853-3. [DOI] [PubMed] [Google Scholar]
