Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jul 15;373(Pt 2):531–537. doi: 10.1042/BJ20030443

Subcellular localization of methionine sulphoxide reductase A (MsrA): evidence for mitochondrial and cytosolic isoforms in rat liver cells.

Stéphanie Vougier 1, Jean Mary 1, Bertrand Friguet 1
PMCID: PMC1223498  PMID: 12693988

Abstract

Proteins are sensitive to reactive oxygen species, and the accumulation of oxidized proteins has been implicated in the aging process and in other age-related pathologies. In proteins, methionine residues are especially sensitive to oxidation, leading to S - and R -methionine sulphoxide diastereoisomers, the reversion of which is achieved by the peptide methionine sulphoxide reductases MsrA and MsrB respectively. The MsrA enzyme, in addition to its role in repair, forms part of the reactive oxygen species scavenging systems that are important in cellular antioxidant defence. MsrA is present in most living organisms, and the mammalian enzyme has been detected in all tissues investigated. In the present study, we investigated the subcellular distribution of MsrA in rat liver cells. Since it seemed likely that MsrA may be localized in areas where reactive oxygen species are produced, rat liver mitochondrial matrix and cytosolic extracts were prepared. The presence of MsrA was assayed in these subcellular compartments by monitoring peptide methionine sulphoxide reductase enzymic activity, by Western blotting and by in situ immunolocalization by electron microscopy using a specific antibody. Moreover, MsrA was identified by MS in a partially purified cytosolic fraction and in a mitochondrial matrix crude extract. Rat MsrA isoforms are encoded by a single gene, and it is suggested that the precursor of the mitochondrial form contains an N-terminal cleavable signal sequence that localizes the MsrA to this organelle. Finally, two-dimensional gel electrophoresis followed by Western-blot analysis of partially purified MsrA from the cytosol and mitochondria, and comparison with the two-dimensional patterns of oxidized recombinant MsrA, revealed oxidative modifications of cysteine residues.

Full Text

The Full Text of this article is available as a PDF (156.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams W. R., Weinbaum G., Weissbach L., Weissbach H., Brot N. Enzymatic reduction of oxidized alpha-1-proteinase inhibitor restores biological activity. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7483–7486. doi: 10.1073/pnas.78.12.7483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aprille J. R., Asimakis G. K. Postnatal development of rat liver mitochondria: state 3 respiration, adenine nucleotide translocase activity, and the net accumulation of adenine nucleotides. Arch Biochem Biophys. 1980 May;201(2):564–575. doi: 10.1016/0003-9861(80)90546-9. [DOI] [PubMed] [Google Scholar]
  3. Böhni P. C., Daum G., Schatz G. Import of proteins into mitochondria. Partial purification of a matrix-located protease involved in cleavage of mitochondrial precursor polypeptides. J Biol Chem. 1983 Apr 25;258(8):4937–4943. [PubMed] [Google Scholar]
  4. Courchesne-Smith C., Jang S. H., Shi Q., DeWille J., Sasaki G., Kolattukudy P. E. Cytoplasmic accumulation of a normally mitochondrial malonyl-CoA decarboxylase by the use of an alternate transcription start site. Arch Biochem Biophys. 1992 Nov 1;298(2):576–586. doi: 10.1016/0003-9861(92)90452-3. [DOI] [PubMed] [Google Scholar]
  5. Davis D. A., Newcomb F. M., Moskovitz J., Wingfield P. T., Stahl S. J., Kaufman J., Fales H. M., Levine R. L., Yarchoan R. HIV-2 protease is inactivated after oxidation at the dimer interface and activity can be partly restored with methionine sulphoxide reductase. Biochem J. 2000 Mar 1;346(Pt 2):305–311. [PMC free article] [PubMed] [Google Scholar]
  6. Ejiri S. I., Weissbach H., Brot N. The purification of methionine sulfoxide reductase from Escherichia coli. Anal Biochem. 1980 Mar 1;102(2):393–398. doi: 10.1016/0003-2697(80)90173-6. [DOI] [PubMed] [Google Scholar]
  7. Etienne Frantzy, Spector Daniel, Brot Nathan, Weissbach Herbert. A methionine sulfoxide reductase in Escherichia coli that reduces the R enantiomer of methionine sulfoxide. Biochem Biophys Res Commun. 2003 Jan 10;300(2):378–382. doi: 10.1016/s0006-291x(02)02870-x. [DOI] [PubMed] [Google Scholar]
  8. Gabbita S. P., Aksenov M. Y., Lovell M. A., Markesbery W. R. Decrease in peptide methionine sulfoxide reductase in Alzheimer's disease brain. J Neurochem. 1999 Oct;73(4):1660–1666. doi: 10.1046/j.1471-4159.1999.0731660.x. [DOI] [PubMed] [Google Scholar]
  9. Garner M. H., Spector A. Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1274–1277. doi: 10.1073/pnas.77.3.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grimaud R., Ezraty B., Mitchell J. K., Lafitte D., Briand C., Derrick P. J., Barras F. Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J Biol Chem. 2001 Oct 24;276(52):48915–48920. doi: 10.1074/jbc.M105509200. [DOI] [PubMed] [Google Scholar]
  11. Grune T., Reinheckel T., Davies K. J. Degradation of oxidized proteins in mammalian cells. FASEB J. 1997 Jun;11(7):526–534. [PubMed] [Google Scholar]
  12. Hansel Alfred, Kuschel Lioba, Hehl Solveig, Lemke Cornelius, Agricola Hans-Jürgen, Hoshi Toshinori, Heinemann Stefan H. Mitochondrial targeting of the human peptide methionine sulfoxide reductase (MSRA), an enzyme involved in the repair of oxidized proteins. FASEB J. 2002 Apr 23;16(8):911–913. doi: 10.1096/fj.01-0737fje. [DOI] [PubMed] [Google Scholar]
  13. Hawlitschek G., Schneider H., Schmidt B., Tropschug M., Hartl F. U., Neupert W. Mitochondrial protein import: identification of processing peptidase and of PEP, a processing enhancing protein. Cell. 1988 Jun 3;53(5):795–806. doi: 10.1016/0092-8674(88)90096-7. [DOI] [PubMed] [Google Scholar]
  14. Hurt E. C., Pesold-Hurt B., Schatz G. The cleavable prepiece of an imported mitochondrial protein is sufficient to direct cytosolic dihydrofolate reductase into the mitochondrial matrix. FEBS Lett. 1984 Dec 10;178(2):306–310. doi: 10.1016/0014-5793(84)80622-5. [DOI] [PubMed] [Google Scholar]
  15. Jung Stephan, Hansel Alfred, Kasperczyk Hubert, Hoshi Toshinori, Heinemann Stefan H. Activity, tissue distribution and site-directed mutagenesis of a human peptide methionine sulfoxide reductase of type B: hCBS1. FEBS Lett. 2002 Sep 11;527(1-3):91–94. doi: 10.1016/s0014-5793(02)03171-x. [DOI] [PubMed] [Google Scholar]
  16. Kryukov Gregory V., Kumar R. Abhilash, Koc Ahmet, Sun Zhaohui, Gladyshev Vadim N. Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4245–4250. doi: 10.1073/pnas.072603099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kumar R. Abhilash, Koc Ahmet, Cerny Ronald L., Gladyshev Vadim N. Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J Biol Chem. 2002 Jul 26;277(40):37527–37535. doi: 10.1074/jbc.M203496200. [DOI] [PubMed] [Google Scholar]
  18. Kuschel L., Hansel A., Schönherr R., Weissbach H., Brot N., Hoshi T., Heinemann S. H. Molecular cloning and functional expression of a human peptide methionine sulfoxide reductase (hMsrA). FEBS Lett. 1999 Jul 30;456(1):17–21. doi: 10.1016/s0014-5793(99)00917-5. [DOI] [PubMed] [Google Scholar]
  19. Lescure A., Gautheret D., Carbon P., Krol A. Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif. J Biol Chem. 1999 Dec 31;274(53):38147–38154. doi: 10.1074/jbc.274.53.38147. [DOI] [PubMed] [Google Scholar]
  20. Levine R. L., Berlett B. S., Moskovitz J., Mosoni L., Stadtman E. R. Methionine residues may protect proteins from critical oxidative damage. Mech Ageing Dev. 1999 Mar 15;107(3):323–332. doi: 10.1016/s0047-6374(98)00152-3. [DOI] [PubMed] [Google Scholar]
  21. Levine R. L., Mosoni L., Berlett B. S., Stadtman E. R. Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15036–15040. doi: 10.1073/pnas.93.26.15036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moskovitz J., Bar-Noy S., Williams W. M., Requena J., Berlett B. S., Stadtman E. R. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci U S A. 2001 Oct 23;98(23):12920–12925. doi: 10.1073/pnas.231472998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moskovitz J., Berlett B. S., Poston J. M., Stadtman E. R. The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9585–9589. doi: 10.1073/pnas.94.18.9585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moskovitz J., Rahman M. A., Strassman J., Yancey S. O., Kushner S. R., Brot N., Weissbach H. Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage. J Bacteriol. 1995 Feb;177(3):502–507. doi: 10.1128/jb.177.3.502-507.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Neupert W. Protein import into mitochondria. Annu Rev Biochem. 1997;66:863–917. doi: 10.1146/annurev.biochem.66.1.863. [DOI] [PubMed] [Google Scholar]
  26. Pacifici R. E., Salo D. C., Davies K. J. Macroxyproteinase (M.O.P.): a 670 kDa proteinase complex that degrades oxidatively denatured proteins in red blood cells. Free Radic Biol Med. 1989;7(5):521–536. doi: 10.1016/0891-5849(89)90028-2. [DOI] [PubMed] [Google Scholar]
  27. Petropoulos I., Mary J., Perichon M., Friguet B. Rat peptide methionine sulphoxide reductase: cloning of the cDNA, and down-regulation of gene expression and enzyme activity during aging. Biochem J. 2001 May 1;355(Pt 3):819–825. doi: 10.1042/bj3550819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rabilloud Thierry, Heller Manfred, Gasnier Francoise, Luche Sylvie, Rey Catherine, Aebersold Ruedi, Benahmed Mohamed, Louisot Pierre, Lunardi Joel. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J Biol Chem. 2002 Mar 19;277(22):19396–19401. doi: 10.1074/jbc.M106585200. [DOI] [PubMed] [Google Scholar]
  29. Rivett A. J. Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian proteases. J Biol Chem. 1985 Jan 10;260(1):300–305. [PubMed] [Google Scholar]
  30. Ruan Hongyu, Tang Xiang Dong, Chen Mai-Lei, Joiner Mei-Ling A., Sun Guangrong, Brot Nathan, Weissbach Herbert, Heinemann Stefan H., Iverson Linda, Wu Chun-Fang. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci U S A. 2002 Feb 26;99(5):2748–2753. doi: 10.1073/pnas.032671199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sadanandom A., Poghosyan Z., Fairbairn D. J., Murphy D. J. Differential regulation of plastidial and cytosolic isoforms of peptide methionine sulfoxide reductase in Arabidopsis. Plant Physiol. 2000 May;123(1):255–264. doi: 10.1104/pp.123.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sass E., Blachinsky E., Karniely S., Pines O. Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini. J Biol Chem. 2001 Oct 3;276(49):46111–46117. doi: 10.1074/jbc.M106061200. [DOI] [PubMed] [Google Scholar]
  33. Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996 Mar 1;68(5):850–858. doi: 10.1021/ac950914h. [DOI] [PubMed] [Google Scholar]
  34. Stuart R. A., Neupert W. Topogenesis of inner membrane proteins of mitochondria. Trends Biochem Sci. 1996 Jul;21(7):261–267. [PubMed] [Google Scholar]
  35. Suzuki T., Sato M., Yoshida T., Tuboi S. Rat liver mitochondrial and cytosolic fumarases with identical amino acid sequences are encoded from a single gene. J Biol Chem. 1989 Feb 15;264(5):2581–2586. [PubMed] [Google Scholar]
  36. Verbeke P., Perichon M., Borot-Laloi C., Schaeverbeke J., Bakala H. Accumulation of advanced glycation endproducts in the rat nephron: link with circulating AGEs during aging. J Histochem Cytochem. 1997 Aug;45(8):1059–1068. doi: 10.1177/002215549704500804. [DOI] [PubMed] [Google Scholar]
  37. Wagner Elsa, Luche Sylvie, Penna Lucia, Chevallet Mireille, Van Dorsselaer Alain, Leize-Wagner Emmanuelle, Rabilloud Thierry. A method for detection of overoxidation of cysteines: peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress. Biochem J. 2002 Sep 15;366(Pt 3):777–785. doi: 10.1042/BJ20020525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weissbach Herbert, Etienne Frantzy, Hoshi Toshinori, Heinemann Stefan H., Lowther W. Todd, Matthews Brian, St John Gregory, Nathan Carl, Brot Nathan. Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys. 2002 Jan 15;397(2):172–178. doi: 10.1006/abbi.2001.2664. [DOI] [PubMed] [Google Scholar]
  39. Yin D., Kuczera K., Squier T. C. The sensitivity of carboxyl-terminal methionines in calmodulin isoforms to oxidation by H(2)O(2) modulates the ability to activate the plasma membrane Ca-ATPase. Chem Res Toxicol. 2000 Feb;13(2):103–110. doi: 10.1021/tx990142a. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES