Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 1;373(Pt 3):641–659. doi: 10.1042/BJ20030484

The role of serine/threonine protein phosphatases in exocytosis.

Alistair T R Sim 1, Monique L Baldwin 1, John A P Rostas 1, Jeff Holst 1, Russell I Ludowyke 1
PMCID: PMC1223558  PMID: 12749763

Abstract

Modulation of exocytosis is integral to the regulation of cellular signalling, and a variety of disorders (such as epilepsy, hypertension, diabetes and asthma) are closely associated with pathological modulation of exocytosis. Emerging evidence points to protein phosphatases as key regulators of exocytosis in many cells and, therefore, as potential targets for the design of novel therapies to treat these diseases. Diverse yet exquisite regulatory mechanisms have evolved to direct the specificity of these enzymes in controlling particular cell processes, and functionally driven studies have demonstrated differential regulation of exocytosis by individual protein phosphatases. This Review discusses the evidence for the regulation of exocytosis by protein phosphatases in three major secretory systems, (1) mast cells, in which the regulation of exocytosis of inflammatory mediators plays a major role in the respiratory response to antigens, (2) insulin-secreting cells in which regulation of exocytosis is essential for metabolic control, and (3) neurons, in which regulation of exocytosis is perhaps the most complex and is essential for effective neurotransmission.

Full Text

The Full Text of this article is available as a PDF (340.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdul-Ghani M., Kravitz E. A., Meiri H., Rahamimoff R. Protein phosphatase inhibitor okadaic acid enhances transmitter release at neuromuscular junctions. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1803–1807. doi: 10.1073/pnas.88.5.1803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adelstein R. S., Beaven M. A., Bengur A. R., Kawamoto S., Ludowyke R. I., Peleg I., Sellers J. R. In situ phosphorylation of human platelet and rat basophilic leukemia cell (RBL-2H3) myosin heavy chain and light chain. Adv Exp Med Biol. 1989;255:289–297. doi: 10.1007/978-1-4684-5679-0_32. [DOI] [PubMed] [Google Scholar]
  3. Ainscow Edward K., Mirshamsi Shirin, Tang Teresa, Ashford Michael L. J., Rutter Guy A. Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels. J Physiol. 2002 Oct 15;544(Pt 2):429–445. doi: 10.1113/jphysiol.2002.022434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Allen P. B., Hvalby O., Jensen V., Errington M. L., Ramsay M., Chaudhry F. A., Bliss T. V., Storm-Mathisen J., Morris R. G., Andersen P. Protein phosphatase-1 regulation in the induction of long-term potentiation: heterogeneous molecular mechanisms. J Neurosci. 2000 May 15;20(10):3537–3543. doi: 10.1523/JNEUROSCI.20-10-03537.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alto Neal, Carlisle Michel Jennifer J., Dodge Kimberly L., Langeberg Lorene K., Scott John D. Intracellular targeting of protein kinases and phosphatases. Diabetes. 2002 Dec;51 (Suppl 3):S385–S388. doi: 10.2337/diabetes.51.2007.s385. [DOI] [PubMed] [Google Scholar]
  6. Alés E., Tabares L., Poyato J. M., Valero V., Lindau M., Alvarez de Toledo G. High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nat Cell Biol. 1999 May;1(1):40–44. doi: 10.1038/9012. [DOI] [PubMed] [Google Scholar]
  7. Ammälä C., Eliasson L., Bokvist K., Berggren P. O., Honkanen R. E., Sjöholm A., Rorsman P. Activation of protein kinases and inhibition of protein phosphatases play a central role in the regulation of exocytosis in mouse pancreatic beta cells. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4343–4347. doi: 10.1073/pnas.91.10.4343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Andreassen P. R., Lacroix F. B., Villa-Moruzzi E., Margolis R. L. Differential subcellular localization of protein phosphatase-1 alpha, gamma1, and delta isoforms during both interphase and mitosis in mammalian cells. J Cell Biol. 1998 Jun 1;141(5):1207–1215. doi: 10.1083/jcb.141.5.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Aramburu J., Rao A., Klee C. B. Calcineurin: from structure to function. Curr Top Cell Regul. 2000;36:237–295. doi: 10.1016/s0070-2137(01)80011-x. [DOI] [PubMed] [Google Scholar]
  10. Arenson M. S., Gill D. S. Differential effects of an L-type Ca2+ channel antagonist on activity- and phosphorylation-enhanced release of acetylcholine at the neuromuscular junction of the frog in vitro. Eur J Neurosci. 1996 Mar;8(3):437–445. doi: 10.1111/j.1460-9568.1996.tb01227.x. [DOI] [PubMed] [Google Scholar]
  11. Artalejo C. R., Elhamdani A., Palfrey H. C. Secretion: dense-core vesicles can kiss-and-run too. Curr Biol. 1998 Jan 15;8(2):R62–R65. doi: 10.1016/s0960-9822(98)70036-3. [DOI] [PubMed] [Google Scholar]
  12. Baldwin Monique L., Rostas John A. P., Sim Alistair T. R. Two modes of exocytosis from synaptosomes are differentially regulated by protein phosphatase types 2A and 2B. J Neurochem. 2003 Jun;85(5):1190–1199. doi: 10.1046/j.1471-4159.2003.01779.x. [DOI] [PubMed] [Google Scholar]
  13. Barford D. Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci. 1996 Nov;21(11):407–412. doi: 10.1016/s0968-0004(96)10060-8. [DOI] [PubMed] [Google Scholar]
  14. Bastan R., Peirce M. J., Peachell P. T. Regulation of immunoglobulin E-mediated secretion by protein phosphatases in human basophils and mast cells of skin and lung. Eur J Pharmacol. 2001 Oct 26;430(1):135–141. doi: 10.1016/s0014-2999(01)01366-8. [DOI] [PubMed] [Google Scholar]
  15. Beaven M. A., Baumgartner R. A. Downstream signals initiated in mast cells by Fc epsilon RI and other receptors. Curr Opin Immunol. 1996 Dec;8(6):766–772. doi: 10.1016/s0952-7915(96)80002-1. [DOI] [PubMed] [Google Scholar]
  16. Begum N., Ragolia L. cAMP counter-regulates insulin-mediated protein phosphatase-2A inactivation in rat skeletal muscle cells. J Biol Chem. 1996 Dec 6;271(49):31166–31171. doi: 10.1074/jbc.271.49.31166. [DOI] [PubMed] [Google Scholar]
  17. Betz W. J., Henkel A. W. Okadaic acid disrupts clusters of synaptic vesicles in frog motor nerve terminals. J Cell Biol. 1994 Mar;124(5):843–854. doi: 10.1083/jcb.124.5.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bevilaqua Lia R. M., Cammarota Martín, Dickson Phillip W., Sim Alistair T. R., Dunkley Peter R. Role of protein phosphatase 2C from bovine adrenal chromaffin cells in the dephosphorylation of phospho-serine 40 tyrosine hydroxylase. J Neurochem. 2003 Jun;85(6):1368–1373. doi: 10.1046/j.1471-4159.2003.01792.x. [DOI] [PubMed] [Google Scholar]
  19. Boger D. L., Ichikawa S., Zhong W. Total synthesis of fostriecin (CI-920). J Am Chem Soc. 2001 May 9;123(18):4161–4167. doi: 10.1021/ja010195q. [DOI] [PubMed] [Google Scholar]
  20. Bollen M. Combinatorial control of protein phosphatase-1. Trends Biochem Sci. 2001 Jul;26(7):426–431. doi: 10.1016/s0968-0004(01)01836-9. [DOI] [PubMed] [Google Scholar]
  21. Bollen Mathieu, Beullens Monique. Signaling by protein phosphatases in the nucleus. Trends Cell Biol. 2002 Mar;12(3):138–145. doi: 10.1016/s0962-8924(01)02247-4. [DOI] [PubMed] [Google Scholar]
  22. Brady M. J., Saltiel A. R. The role of protein phosphatase-1 in insulin action. Recent Prog Horm Res. 2001;56:157–173. doi: 10.1210/rp.56.1.157. [DOI] [PubMed] [Google Scholar]
  23. Brown Bruce M., Carlson Brian L., Zhu Xuemei, Lolley Richard N., Craft Cheryl M. Light-driven translocation of the protein phosphatase 2A complex regulates light/dark dephosphorylation of phosducin and rhodopsin. Biochemistry. 2002 Nov 19;41(46):13526–13538. doi: 10.1021/bi0204490. [DOI] [PubMed] [Google Scholar]
  24. Brown Bruce M., Carlson Brian L., Zhu Xuemei, Lolley Richard N., Craft Cheryl M. Light-driven translocation of the protein phosphatase 2A complex regulates light/dark dephosphorylation of phosducin and rhodopsin. Biochemistry. 2002 Nov 19;41(46):13526–13538. doi: 10.1021/bi0204490. [DOI] [PubMed] [Google Scholar]
  25. Browne G. J., Delibegovic M., Keppens S., Stalmans W., Cohen P. T. The level of the glycogen targetting regulatory subunit R5 of protein phosphatase 1 is decreased in the livers of insulin-dependent diabetic rats and starved rats. Biochem J. 2001 Dec 1;360(Pt 2):449–459. doi: 10.1042/0264-6021:3600449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Brush Matthew H., Weiser Douglas C., Shenolikar Shirish. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol. 2003 Feb;23(4):1292–1303. doi: 10.1128/MCB.23.4.1292-1303.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Burgess T. L., Kelly R. B. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol. 1987;3:243–293. doi: 10.1146/annurev.cb.03.110187.001331. [DOI] [PubMed] [Google Scholar]
  28. Burgoyne R. D., Fisher R. J., Graham M. E., Haynes L. P., Morgan A. Control of membrane fusion dynamics during regulated exocytosis. Biochem Soc Trans. 2001 Aug;29(Pt 4):467–472. doi: 10.1042/bst0290467. [DOI] [PubMed] [Google Scholar]
  29. Cameron A. M., Steiner J. P., Roskams A. J., Ali S. M., Ronnett G. V., Snyder S. H. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell. 1995 Nov 3;83(3):463–472. doi: 10.1016/0092-8674(95)90124-8. [DOI] [PubMed] [Google Scholar]
  30. Cameron A. M., Steiner J. P., Sabatini D. M., Kaplin A. I., Walensky L. D., Snyder S. H. Immunophilin FK506 binding protein associated with inositol 1,4,5-trisphosphate receptor modulates calcium flux. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1784–1788. doi: 10.1073/pnas.92.5.1784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Carmichael W. W., Beasley V., Bunner D. L., Eloff J. N., Falconer I., Gorham P., Harada K., Krishnamurthy T., Yu M. J., Moore R. E. Naming of cyclic heptapeptide toxins of cyanobacteria (blue-green algae). Toxicon. 1988;26(11):971–973. doi: 10.1016/0041-0101(88)90195-x. [DOI] [PubMed] [Google Scholar]
  32. Cayla X., Goris J., Hermann J., Hendrix P., Ozon R., Merlevede W. Isolation and characterization of a tyrosyl phosphatase activator from rabbit skeletal muscle and Xenopus laevis oocytes. Biochemistry. 1990 Jan 23;29(3):658–667. doi: 10.1021/bi00455a010. [DOI] [PubMed] [Google Scholar]
  33. Cayla X., Goris J., Hermann J., Jessus C., Hendrix P., Merlevede W. Phosphotyrosyl phosphatase activity of the polycation-stimulated protein phosphatases and involvement of dephosphorylation in cell cycle regulation. Adv Enzyme Regul. 1990;30:265–285. doi: 10.1016/0065-2571(90)90022-t. [DOI] [PubMed] [Google Scholar]
  34. Ceccaldi P. E., Grohovaz F., Benfenati F., Chieregatti E., Greengard P., Valtorta F. Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy. J Cell Biol. 1995 Mar;128(5):905–912. doi: 10.1083/jcb.128.5.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ceulemans Hugo, Stalmans Willy, Bollen Mathieu. Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution. Bioessays. 2002 Apr;24(4):371–381. doi: 10.1002/bies.10069. [DOI] [PubMed] [Google Scholar]
  36. Chalfant C. E., Kishikawa K., Mumby M. C., Kamibayashi C., Bielawska A., Hannun Y. A. Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. J Biol Chem. 1999 Jul 16;274(29):20313–20317. doi: 10.1074/jbc.274.29.20313. [DOI] [PubMed] [Google Scholar]
  37. Chandrasekar B., Mukherjee S. K. Effect of prolonged administration of cyclosporin A on (pro)insulin biosynthesis and insulin release by rat islets of Langerhans. Biochem Pharmacol. 1988 Oct 1;37(19):3609–3611. doi: 10.1016/0006-2952(88)90391-7. [DOI] [PubMed] [Google Scholar]
  38. Chen J., Martin B. L., Brautigan D. L. Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science. 1992 Aug 28;257(5074):1261–1264. doi: 10.1126/science.1325671. [DOI] [PubMed] [Google Scholar]
  39. Chen J., Peterson R. T., Schreiber S. L. Alpha 4 associates with protein phosphatases 2A, 4, and 6. Biochem Biophys Res Commun. 1998 Jun 29;247(3):827–832. doi: 10.1006/bbrc.1998.8792. [DOI] [PubMed] [Google Scholar]
  40. Chen M. S., Silverstein A. M., Pratt W. B., Chinkers M. The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant. J Biol Chem. 1996 Dec 13;271(50):32315–32320. doi: 10.1074/jbc.271.50.32315. [DOI] [PubMed] [Google Scholar]
  41. Chen M. X., Cohen P. T. Activation of protein phosphatase 5 by limited proteolysis or the binding of polyunsaturated fatty acids to the TPR domain. FEBS Lett. 1997 Jan 2;400(1):136–140. doi: 10.1016/s0014-5793(96)01427-5. [DOI] [PubMed] [Google Scholar]
  42. Chen M. X., McPartlin A. E., Brown L., Chen Y. H., Barker H. M., Cohen P. T. A novel human protein serine/threonine phosphatase, which possesses four tetratricopeptide repeat motifs and localizes to the nucleus. EMBO J. 1994 Sep 15;13(18):4278–4290. doi: 10.1002/j.1460-2075.1994.tb06748.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Cheng A., Balczon R., Zuo Z., Koons J. S., Walsh A. H., Honkanen R. E. Fostriecin-mediated G2-M-phase growth arrest correlates with abnormal centrosome replication, the formation of aberrant mitotic spindles, and the inhibition of serine/threonine protein phosphatase activity. Cancer Res. 1998 Aug 15;58(16):3611–3619. [PubMed] [Google Scholar]
  44. Chheda M. G., Ashery U., Thakur P., Rettig J., Sheng Z. H. Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nat Cell Biol. 2001 Apr;3(4):331–338. doi: 10.1038/35070000. [DOI] [PubMed] [Google Scholar]
  45. Chinkers M. Protein phosphatase 5 in signal transduction. Trends Endocrinol Metab. 2001 Jan-Feb;12(1):28–32. doi: 10.1016/s1043-2760(00)00335-0. [DOI] [PubMed] [Google Scholar]
  46. Chinkers M. Targeting of a distinctive protein-serine phosphatase to the protein kinase-like domain of the atrial natriuretic peptide receptor. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11075–11079. doi: 10.1073/pnas.91.23.11075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Choi O. H., Adelstein R. S., Beaven M. A. Secretion from rat basophilic RBL-2H3 cells is associated with diphosphorylation of myosin light chains by myosin light chain kinase as well as phosphorylation by protein kinase C. J Biol Chem. 1994 Jan 7;269(1):536–541. [PubMed] [Google Scholar]
  48. Choi O. H., Adelstein R. S., Beaven M. A. Secretion from rat basophilic RBL-2H3 cells is associated with diphosphorylation of myosin light chains by myosin light chain kinase as well as phosphorylation by protein kinase C. J Biol Chem. 1994 Jan 7;269(1):536–541. [PubMed] [Google Scholar]
  49. Cohen P. T. Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci. 1997 Jul;22(7):245–251. doi: 10.1016/s0968-0004(97)01060-8. [DOI] [PubMed] [Google Scholar]
  50. Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
  51. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  52. Cohen Patricia T. W. Protein phosphatase 1--targeted in many directions. J Cell Sci. 2002 Jan 15;115(Pt 2):241–256. doi: 10.1242/jcs.115.2.241. [DOI] [PubMed] [Google Scholar]
  53. Cousin M. A., Robinson P. J. The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci. 2001 Nov;24(11):659–665. doi: 10.1016/s0166-2236(00)01930-5. [DOI] [PubMed] [Google Scholar]
  54. Cousin M. A., Robinson P. J. Two mechanisms of synaptic vesicle recycling in rat brain nerve terminals. J Neurochem. 2000 Oct;75(4):1645–1653. doi: 10.1046/j.1471-4159.2000.0751645.x. [DOI] [PubMed] [Google Scholar]
  55. Cousin M. A., Tan T. C., Robinson P. J. Protein phosphorylation is required for endocytosis in nerve terminals: potential role for the dephosphins dynamin I and synaptojanin, but not AP180 or amphiphysin. J Neurochem. 2001 Jan;76(1):105–116. doi: 10.1046/j.1471-4159.2001.00049.x. [DOI] [PubMed] [Google Scholar]
  56. Crabtree G. R. Calcium, calcineurin, and the control of transcription. J Biol Chem. 2000 Nov 28;276(4):2313–2316. doi: 10.1074/jbc.R000024200. [DOI] [PubMed] [Google Scholar]
  57. Cunha-Melo J. R., Gonzaga H. M., Ali H., Huang F. L., Huang K. P., Beaven M. A. Studies of protein kinase C in the rat basophilic leukemia (RBL-2H3) cell reveal that antigen-induced signals are not mimicked by the actions of phorbol myristate acetate and Ca2+ ionophore. J Immunol. 1989 Oct 15;143(8):2617–2625. [PubMed] [Google Scholar]
  58. Cunha-Melo J. R., Gonzaga H. M., Ali H., Huang F. L., Huang K. P., Beaven M. A. Studies of protein kinase C in the rat basophilic leukemia (RBL-2H3) cell reveal that antigen-induced signals are not mimicked by the actions of phorbol myristate acetate and Ca2+ ionophore. J Immunol. 1989 Oct 15;143(8):2617–2625. [PubMed] [Google Scholar]
  59. Dai Z., Peng H. B. Dynamics of synaptic vesicles in cultured spinal cord neurons in relationship to synaptogenesis. Mol Cell Neurosci. 1996 Jun;7(6):443–452. doi: 10.1006/mcne.1996.0032. [DOI] [PubMed] [Google Scholar]
  60. Dell'Acqua Mark L., Dodge Kimberly L., Tavalin Steven J., Scott John D. Mapping the protein phosphatase-2B anchoring site on AKAP79. Binding and inhibition of phosphatase activity are mediated by residues 315-360. J Biol Chem. 2002 Sep 26;277(50):48796–48802. doi: 10.1074/jbc.M207833200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Dobrowsky R. T., Hannun Y. A. Ceramide-activated protein phosphatase: partial purification and relationship to protein phosphatase 2A. Adv Lipid Res. 1993;25:91–104. [PubMed] [Google Scholar]
  62. Dobrowsky R. T., Kamibayashi C., Mumby M. C., Hannun Y. A. Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem. 1993 Jul 25;268(21):15523–15530. [PubMed] [Google Scholar]
  63. Donelan Matthew J., Morfini Gerardo, Julyan Richard, Sommers Scott, Hays Lori, Kajio Hiroshi, Briaud Isabelle, Easom Richard A., Molkentin Jeffery D., Brady Scott T. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis. J Biol Chem. 2002 Apr 26;277(27):24232–24242. doi: 10.1074/jbc.M203345200. [DOI] [PubMed] [Google Scholar]
  64. Dulubova Irina, Yamaguchi Tomohiro, Arac Demet, Li Hongmei, Huryeva Iryna, Min Sang-Won, Rizo Josep, Sudhof Thomas C. Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins. Proc Natl Acad Sci U S A. 2002 Dec 27;100(1):32–37. doi: 10.1073/pnas.232701299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Ebihara K., Fukunaga K., Matsumoto K., Shichiri M., Miyamoto E. Cyclosporin A stimulation of glucose-induced insulin secretion in MIN6 cells. Endocrinology. 1996 Dec;137(12):5255–5263. doi: 10.1210/endo.137.12.8940343. [DOI] [PubMed] [Google Scholar]
  66. Egloff M. P., Johnson D. F., Moorhead G., Cohen P. T., Cohen P., Barford D. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 1997 Apr 15;16(8):1876–1887. doi: 10.1093/emboj/16.8.1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Eide Erik J., Vielhaber Erica L., Hinz William A., Virshup David M. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J Biol Chem. 2002 Mar 1;277(19):17248–17254. doi: 10.1074/jbc.M111466200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Estévez M. D., Vieytes M. R., Louzao M. C., Botana L. M. Effect of okadaic acid on immunologic and non-immunologic histamine release in rat mast cells. Biochem Pharmacol. 1994 Feb 9;47(3):591–593. doi: 10.1016/0006-2952(94)90194-5. [DOI] [PubMed] [Google Scholar]
  69. Evans G. J., Pocock J. M. Modulation of neurotransmitter release by dihydropyridine-sensitive calcium channels involves tyrosine phosphorylation. Eur J Neurosci. 1999 Jan;11(1):279–292. doi: 10.1046/j.1460-9568.1999.00427.x. [DOI] [PubMed] [Google Scholar]
  70. Favre B., Turowski P., Hemmings B. A. Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J Biol Chem. 1997 May 23;272(21):13856–13863. doi: 10.1074/jbc.272.21.13856. [DOI] [PubMed] [Google Scholar]
  71. Fesce R., Meldolesi J. Peeping at the vesicle kiss. Nat Cell Biol. 1999 May;1(1):E3–E4. doi: 10.1038/8950. [DOI] [PubMed] [Google Scholar]
  72. Fesce R. The kinetics of nerve-evoked quantal secretion. Philos Trans R Soc Lond B Biol Sci. 1999 Feb 28;354(1381):319–329. doi: 10.1098/rstb.1999.0383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Fienberg A. A., Greengard P. The DARPP-32 knockout mouse. Brain Res Brain Res Rev. 2000 Mar;31(2-3):313–319. doi: 10.1016/s0165-0173(99)00047-8. [DOI] [PubMed] [Google Scholar]
  74. Fiscella M., Zhang H., Fan S., Sakaguchi K., Shen S., Mercer W. E., Vande Woude G. F., O'Connor P. M., Appella E. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6048–6053. doi: 10.1073/pnas.94.12.6048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Fitzgerald M. L., Reed G. L. Rab6 is phosphorylated in thrombin-activated platelets by a protein kinase C-dependent mechanism: effects on GTP/GDP binding and cellular distribution. Biochem J. 1999 Sep 1;342(Pt 2):353–360. [PMC free article] [PubMed] [Google Scholar]
  76. Fletcher A. I., Shuang R., Giovannucci D. R., Zhang L., Bittner M. A., Stuenkel E. L. Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc18. J Biol Chem. 1999 Feb 12;274(7):4027–4035. doi: 10.1074/jbc.274.7.4027. [DOI] [PubMed] [Google Scholar]
  77. Floer M., Stock J. Carboxyl methylation of protein phosphatase 2A from Xenopus eggs is stimulated by cAMP and inhibited by okadaic acid. Biochem Biophys Res Commun. 1994 Jan 14;198(1):372–379. doi: 10.1006/bbrc.1994.1052. [DOI] [PubMed] [Google Scholar]
  78. Fuentes J. J., Genescà L., Kingsbury T. J., Cunningham K. W., Pérez-Riba M., Estivill X., de la Luna S. DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum Mol Genet. 2000 Jul 1;9(11):1681–1690. doi: 10.1093/hmg/9.11.1681. [DOI] [PubMed] [Google Scholar]
  79. Gerber Stefan H., Südhof Thomas C. Molecular determinants of regulated exocytosis. Diabetes. 2002 Feb;51 (Suppl 1):S3–11. doi: 10.2337/diabetes.51.2007.s3. [DOI] [PubMed] [Google Scholar]
  80. Gerst J. E. SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell Mol Life Sci. 1999 May;55(5):707–734. doi: 10.1007/s000180050328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Gorina S., Pavletich N. P. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science. 1996 Nov 8;274(5289):1001–1005. doi: 10.1126/science.274.5289.1001. [DOI] [PubMed] [Google Scholar]
  82. Graham Margaret E., O'Callaghan Dermott W., McMahon Harvey T., Burgoyne Robert D. Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size. Proc Natl Acad Sci U S A. 2002 May 7;99(10):7124–7129. doi: 10.1073/pnas.102645099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Greengard P., Allen P. B., Nairn A. C. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron. 1999 Jul;23(3):435–447. doi: 10.1016/s0896-6273(00)80798-9. [DOI] [PubMed] [Google Scholar]
  84. Greengard P., Browning M. D. Studies of the physiological role of specific neuronal phosphoproteins. Adv Second Messenger Phosphoprotein Res. 1988;21:133–146. [PubMed] [Google Scholar]
  85. Greengard P., Nairn A. C., Girault J. A., Ouimet C. C., Snyder G. L., Fisone G., Allen P. B., Fienberg A., Nishi A. The DARPP-32/protein phosphatase-1 cascade: a model for signal integration. Brain Res Brain Res Rev. 1998 May;26(2-3):274–284. doi: 10.1016/s0165-0173(97)00057-x. [DOI] [PubMed] [Google Scholar]
  86. Greengard P., Valtorta F., Czernik A. J., Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science. 1993 Feb 5;259(5096):780–785. doi: 10.1126/science.8430330. [DOI] [PubMed] [Google Scholar]
  87. Groves M. R., Hanlon N., Turowski P., Hemmings B. A., Barford D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell. 1999 Jan 8;96(1):99–110. doi: 10.1016/s0092-8674(00)80963-0. [DOI] [PubMed] [Google Scholar]
  88. Guatimosim Cristina, Hull Court, Von Gersdorff Henrique, Prado Marco A. M. Okadaic acid disrupts synaptic vesicle trafficking in a ribbon-type synapse. J Neurochem. 2002 Sep;82(5):1047–1057. doi: 10.1046/j.1471-4159.2002.01029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Guo H., Damuni Z. Autophosphorylation-activated protein kinase phosphorylates and inactivates protein phosphatase 2A. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2500–2504. doi: 10.1073/pnas.90.6.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Guo H., Reddy S. A., Damuni Z. Purification and characterization of an autophosphorylation-activated protein serine threonine kinase that phosphorylates and inactivates protein phosphatase 2A. J Biol Chem. 1993 May 25;268(15):11193–11198. [PubMed] [Google Scholar]
  91. Guy G. R., Philp R., Tan Y. H. Activation of protein kinases and the inactivation of protein phosphatase 2A in tumour necrosis factor and interleukin-1 signal-transduction pathways. Eur J Biochem. 1995 Apr 15;229(2):503–511. [PubMed] [Google Scholar]
  92. Götz J., Probst A., Ehler E., Hemmings B., Kues W. Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12370–12375. doi: 10.1073/pnas.95.21.12370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Haby C., Larsson O., Islam M. S., Aunis D., Berggren P. O., Zwiller J. Inhibition of serine/threonine protein phosphatases promotes opening of voltage-activated L-type Ca2+ channels in insulin-secreting cells. Biochem J. 1994 Mar 1;298(Pt 2):341–346. doi: 10.1042/bj2980341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Hanada M., Kobayashi T., Ohnishi M., Ikeda S., Wang H., Katsura K., Yanagawa Y., Hiraga A., Kanamaru R., Tamura S. Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells. FEBS Lett. 1998 Oct 23;437(3):172–176. doi: 10.1016/s0014-5793(98)01229-0. [DOI] [PubMed] [Google Scholar]
  95. Hanada M., Ninomiya-Tsuji J., Komaki K., Ohnishi M., Katsura K., Kanamaru R., Matsumoto K., Tamura S. Regulation of the TAK1 signaling pathway by protein phosphatase 2C. J Biol Chem. 2000 Dec 4;276(8):5753–5759. doi: 10.1074/jbc.M007773200. [DOI] [PubMed] [Google Scholar]
  96. Hansra G., Bornancin F., Whelan R., Hemmings B. A., Parker P. J. 12-O-Tetradecanoylphorbol-13-acetate-induced dephosphorylation of protein kinase Calpha correlates with the presence of a membrane-associated protein phosphatase 2A heterotrimer. J Biol Chem. 1996 Dec 20;271(51):32785–32788. doi: 10.1074/jbc.271.51.32785. [DOI] [PubMed] [Google Scholar]
  97. Hansra G., Bornancin F., Whelan R., Hemmings B. A., Parker P. J. 12-O-Tetradecanoylphorbol-13-acetate-induced dephosphorylation of protein kinase Calpha correlates with the presence of a membrane-associated protein phosphatase 2A heterotrimer. J Biol Chem. 1996 Dec 20;271(51):32785–32788. doi: 10.1074/jbc.271.51.32785. [DOI] [PubMed] [Google Scholar]
  98. Hansson Magnus J., Persson Tanja, Friberg Hans, Keep Marcus F., Rees Anthony, Wieloch Tadeusz, Elmér Eskil. Powerful cyclosporin inhibition of calcium-induced permeability transition in brain mitochondria. Brain Res. 2003 Jan 17;960(1-2):99–111. doi: 10.1016/s0006-8993(02)03798-8. [DOI] [PubMed] [Google Scholar]
  99. Hardie D. G., Haystead T. A., Sim A. T. Use of okadaic acid to inhibit protein phosphatases in intact cells. Methods Enzymol. 1991;201:469–476. doi: 10.1016/0076-6879(91)01042-z. [DOI] [PubMed] [Google Scholar]
  100. Hashimoto Y., Perrino B. A., Soderling T. R. Identification of an autoinhibitory domain in calcineurin. J Biol Chem. 1990 Feb 5;265(4):1924–1927. [PubMed] [Google Scholar]
  101. Haystead T. A., Sim A. T., Carling D., Honnor R. C., Tsukitani Y., Cohen P., Hardie D. G. Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature. 1989 Jan 5;337(6202):78–81. doi: 10.1038/337078a0. [DOI] [PubMed] [Google Scholar]
  102. Heidelberger R., Heinemann C., Neher E., Matthews G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature. 1994 Oct 6;371(6497):513–515. doi: 10.1038/371513a0. [DOI] [PubMed] [Google Scholar]
  103. Heinemann C., Chow R. H., Neher E., Zucker R. S. Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys J. 1994 Dec;67(6):2546–2557. doi: 10.1016/S0006-3495(94)80744-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Heinrich Reinhart, Neel Benjamin G., Rapoport Tom A. Mathematical models of protein kinase signal transduction. Mol Cell. 2002 May;9(5):957–970. doi: 10.1016/s1097-2765(02)00528-2. [DOI] [PubMed] [Google Scholar]
  105. Hemmings B. A., Adams-Pearson C., Maurer F., Müller P., Goris J., Merlevede W., Hofsteenge J., Stone S. R. alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry. 1990 Apr 3;29(13):3166–3173. doi: 10.1021/bi00465a002. [DOI] [PubMed] [Google Scholar]
  106. Hendrix P., Mayer-Jackel R. E., Cron P., Goris J., Hofsteenge J., Merlevede W., Hemmings B. A. Structure and expression of a 72-kDa regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. J Biol Chem. 1993 Jul 15;268(20):15267–15276. [PubMed] [Google Scholar]
  107. Hens J. J., De Wit M., Ghijsen W. E., Leenders A. G., Boddeke H. W., Kissmehl R., Wiegant V. M., Weller U., Gispen W. H., De Graan P. N. Role of calcineurin in Ca2+-induced release of catecholamines and neuropeptides. J Neurochem. 1998 Nov;71(5):1978–1986. doi: 10.1046/j.1471-4159.1998.71051978.x. [DOI] [PubMed] [Google Scholar]
  108. Hermel J. M., Dirkx R., Jr, Solimena M. Post-translational modifications of ICA512, a receptor tyrosine phosphatase-like protein of secretory granules. Eur J Neurosci. 1999 Aug;11(8):2609–2620. doi: 10.1046/j.1460-9568.1999.00677.x. [DOI] [PubMed] [Google Scholar]
  109. Herron C. E., Malenka R. C. Activity-dependent enhancement of synaptic transmission in hippocampal slices treated with the phosphatase inhibitor calyculin A. J Neurosci. 1994 Oct;14(10):6013–6020. doi: 10.1523/JNEUROSCI.14-10-06013.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Hingtgen C. M., Vasko M. R. The phosphatase inhibitor, okadaic acid, increases peptide release from rat sensory neurons in culture. Neurosci Lett. 1994 Aug 29;178(1):135–138. doi: 10.1016/0304-3940(94)90308-5. [DOI] [PubMed] [Google Scholar]
  111. Holroyd Phillip, Lang Thorsten, Wenzel Dirk, De Camilli Pietro, Jahn Reinhard. Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells. Proc Natl Acad Sci U S A. 2002 Dec 16;99(26):16806–16811. doi: 10.1073/pnas.222677399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Holst Jeff, Sim Alistair T. R., Ludowyke Russell I. Protein phosphatases 1 and 2A transiently associate with myosin during the peak rate of secretion from mast cells. Mol Biol Cell. 2002 Mar;13(3):1083–1098. doi: 10.1091/mbc.01-12-0587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Honkanen R. E., Golden T. Regulators of serine/threonine protein phosphatases at the dawn of a clinical era? Curr Med Chem. 2002 Nov;9(22):2055–2075. doi: 10.2174/0929867023368836. [DOI] [PubMed] [Google Scholar]
  114. Huang X., Honkanen R. E. Molecular cloning, expression, and characterization of a novel human serine/threonine protein phosphatase, PP7, that is homologous to Drosophila retinal degeneration C gene product (rdgC). J Biol Chem. 1998 Jan 16;273(3):1462–1468. doi: 10.1074/jbc.273.3.1462. [DOI] [PubMed] [Google Scholar]
  115. Hubbard M. J., Cohen P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci. 1993 May;18(5):172–177. doi: 10.1016/0968-0004(93)90109-z. [DOI] [PubMed] [Google Scholar]
  116. Hubbard M. J., Klee C. B. Characterization of a high-affinity monoclonal antibody to calcineurin whose epitope defines a new structural domain of calcineurin A. Eur J Biochem. 1989 Nov 6;185(2):411–418. doi: 10.1111/j.1432-1033.1989.tb15130.x. [DOI] [PubMed] [Google Scholar]
  117. Hubbard M. J., Klee C. B. Functional domain structure of calcineurin A: mapping by limited proteolysis. Biochemistry. 1989 Feb 21;28(4):1868–1874. doi: 10.1021/bi00430a066. [DOI] [PubMed] [Google Scholar]
  118. Hultsch T., Brand P., Lohmann S., Saloga J., Kincaid R. L., Knop J. Direct evidence that FK506 inhibition of FcepsilonRI-mediated exocytosis from RBL mast cells involves calcineurin. Arch Dermatol Res. 1998 May;290(5):258–263. doi: 10.1007/s004030050301. [DOI] [PubMed] [Google Scholar]
  119. Høy M., Bokvist K., Xiao-Gang W., Hansen J., Juhl K., Berggren P. O., Buschard K., Gromada J. Phentolamine inhibits exocytosis of glucagon by Gi2 protein-dependent activation of calcineurin in rat pancreatic alpha -cells. J Biol Chem. 2001 Jan 12;276(2):924–930. doi: 10.1074/jbc.M007562200. [DOI] [PubMed] [Google Scholar]
  120. Jahn R., Südhof T. C. Membrane fusion and exocytosis. Annu Rev Biochem. 1999;68:863–911. doi: 10.1146/annurev.biochem.68.1.863. [DOI] [PubMed] [Google Scholar]
  121. Janssens V., Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J. 2001 Feb 1;353(Pt 3):417–439. doi: 10.1042/0264-6021:3530417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Jayaraman T., Brillantes A. M., Timerman A. P., Fleischer S., Erdjument-Bromage H., Tempst P., Marks A. R. FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem. 1992 May 15;267(14):9474–9477. [PubMed] [Google Scholar]
  123. Jessus C., Goris J., Cayla X., Hermann J., Hendrix P., Ozon R., Merlevede W. Tubulin and MAP2 regulate the PCSL phosphatase activity. A possible new role for microtubular proteins. Eur J Biochem. 1989 Mar 1;180(1):15–22. doi: 10.1111/j.1432-1033.1989.tb14609.x. [DOI] [PubMed] [Google Scholar]
  124. Jovanovic J. N., Sihra T. S., Nairn A. C., Hemmings H. C., Jr, Greengard P., Czernik A. J. Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+-dependent glutamate release in isolated nerve terminals. J Neurosci. 2001 Oct 15;21(20):7944–7953. doi: 10.1523/JNEUROSCI.21-20-07944.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Katayose Y., Li M., Al-Murrani S. W., Shenolikar S., Damuni Z. Protein phosphatase 2A inhibitors, I(1)(PP2A) and I(2)(PP2A), associate with and modify the substrate specificity of protein phosphatase 1. J Biol Chem. 2000 Mar 31;275(13):9209–9214. doi: 10.1074/jbc.275.13.9209. [DOI] [PubMed] [Google Scholar]
  126. Keranen L. M., Dutil E. M., Newton A. C. Protein kinase C is regulated in vivo by three functionally distinct phosphorylations. Curr Biol. 1995 Dec 1;5(12):1394–1403. doi: 10.1016/s0960-9822(95)00277-6. [DOI] [PubMed] [Google Scholar]
  127. Khew-Goodall Y., Mayer R. E., Maurer F., Stone S. R., Hemmings B. A. Structure and transcriptional regulation of protein phosphatase 2A catalytic subunit genes. Biochemistry. 1991 Jan 8;30(1):89–97. doi: 10.1021/bi00215a014. [DOI] [PubMed] [Google Scholar]
  128. Kim Min-Jung, Jo Dong-Gyu, Hong Gil-Sun, Kim Byung Ju, Lai Michael, Cho Dong-Hyung, Kim Ki-Woo, Bandyopadhyay Arun, Hong Yeon-Mi, Kim Do Han. Calpain-dependent cleavage of cain/cabin1 activates calcineurin to mediate calcium-triggered cell death. Proc Natl Acad Sci U S A. 2002 Jul 11;99(15):9870–9875. doi: 10.1073/pnas.152336999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Kingsbury T. J., Cunningham K. W. A conserved family of calcineurin regulators. Genes Dev. 2000 Jul 1;14(13):1595–1604. [PMC free article] [PubMed] [Google Scholar]
  130. Kitani S., Teshima R., Nonomura Y., Morita Y., Ito K. The effect of okadaic acid on histamine release, cell morphology and phosphorylation in rat basophilic leukemia (RBL-2H3) cells, human basophils and rat peritoneal mast cells. Int Arch Allergy Immunol. 1996 Aug;110(4):339–347. doi: 10.1159/000237326. [DOI] [PubMed] [Google Scholar]
  131. Kitani T., Ishida A., Okuno S., Takeuchi M., Kameshita I., Fujisawa H. Molecular cloning of Ca2+/calmodulin-dependent protein kinase phosphatase. J Biochem. 1999 Jun;125(6):1022–1028. doi: 10.1093/oxfordjournals.jbchem.a022381. [DOI] [PubMed] [Google Scholar]
  132. Klee C. B., Ren H., Wang X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem. 1998 May 29;273(22):13367–13370. doi: 10.1074/jbc.273.22.13367. [DOI] [PubMed] [Google Scholar]
  133. Klenchin V. A., Martin T. F. Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie. 2000 May;82(5):399–407. doi: 10.1016/s0300-9084(00)00208-x. [DOI] [PubMed] [Google Scholar]
  134. Klumpp S., Selke D., Hermesmeier J. Protein phosphatase type 2C active at physiological Mg2+: stimulation by unsaturated fatty acids. FEBS Lett. 1998 Oct 23;437(3):229–232. doi: 10.1016/s0014-5793(98)01237-x. [DOI] [PubMed] [Google Scholar]
  135. Koh Cheng-Gee, Tan E-Jean, Manser Edward, Lim Louis. The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. Curr Biol. 2002 Feb 19;12(4):317–321. doi: 10.1016/s0960-9822(02)00652-8. [DOI] [PubMed] [Google Scholar]
  136. Kowluru A., Seavey S. E., Rabaglia M. E., Nesher R., Metz S. A. Carboxylmethylation of the catalytic subunit of protein phosphatase 2A in insulin-secreting cells: evidence for functional consequences on enzyme activity and insulin secretion. Endocrinology. 1996 Jun;137(6):2315–2323. doi: 10.1210/endo.137.6.8641181. [DOI] [PubMed] [Google Scholar]
  137. Krautheim A., Rustenbeck I., Steinfelder H. J. Phosphatase inhibitors induce defective hormone secretion in insulin-secreting cells and entry into apoptosis. Exp Clin Endocrinol Diabetes. 1999;107(1):29–34. doi: 10.1055/s-0029-1212069. [DOI] [PubMed] [Google Scholar]
  138. Kuno T., Mukai H., Ito A., Chang C. D., Kishima K., Saito N., Tanaka C. Distinct cellular expression of calcineurin A alpha and A beta in rat brain. J Neurochem. 1992 May;58(5):1643–1651. doi: 10.1111/j.1471-4159.1992.tb10036.x. [DOI] [PubMed] [Google Scholar]
  139. Lai M. M., Luo H. R., Burnett P. E., Hong J. J., Snyder S. H. The calcineurin-binding protein cain is a negative regulator of synaptic vesicle endocytosis. J Biol Chem. 2000 Nov 3;275(44):34017–34020. doi: 10.1074/jbc.C000429200. [DOI] [PubMed] [Google Scholar]
  140. Lang T., Wacker I., Wunderlich I., Rohrbach A., Giese G., Soldati T., Almers W. Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys J. 2000 Jun;78(6):2863–2877. doi: 10.1016/S0006-3495(00)76828-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Lauritsen J. P., Menné C., Kastrup J., Dietrich J., Odum N., Geisler C. beta2-adaptin is constitutively de-phosphorylated by serine/threonine protein phosphatase PP2A and phosphorylated by a staurosporine-sensitive kinase. Biochim Biophys Acta. 2000 Sep 20;1497(3):297–307. doi: 10.1016/s0167-4889(00)00065-3. [DOI] [PubMed] [Google Scholar]
  142. Lee J., Stock J. Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J Biol Chem. 1993 Sep 15;268(26):19192–19195. [PubMed] [Google Scholar]
  143. Leiers T., Bihlmayer A., Ammon H. P., Wahl M. A. [Ca(2+)](i)- and insulin-stimulating effect of the non-membranepermeable phosphatase-inhibitor microcystin-LR in intact insulin-secreting cells (RINm5F). Br J Pharmacol. 2000 Jul;130(6):1406–1410. doi: 10.1038/sj.bjp.0703441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Lester L. B., Faux M. C., Nauert J. B., Scott J. D. Targeted protein kinase A and PP-2B regulate insulin secretion through reversible phosphorylation. Endocrinology. 2001 Mar;142(3):1218–1227. doi: 10.1210/endo.142.3.8023. [DOI] [PubMed] [Google Scholar]
  145. Leung-Hagesteijn C., Mahendra A., Naruszewicz I., Hannigan G. E. Modulation of integrin signal transduction by ILKAP, a protein phosphatase 2C associating with the integrin-linked kinase, ILK1. EMBO J. 2001 May 1;20(9):2160–2170. doi: 10.1093/emboj/20.9.2160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Li M., Makkinje A., Damuni Z. Molecular identification of I1PP2A, a novel potent heat-stable inhibitor protein of protein phosphatase 2A. Biochemistry. 1996 Jun 4;35(22):6998–7002. doi: 10.1021/bi960581y. [DOI] [PubMed] [Google Scholar]
  147. Li M., Makkinje A., Damuni Z. The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem. 1996 May 10;271(19):11059–11062. doi: 10.1074/jbc.271.19.11059. [DOI] [PubMed] [Google Scholar]
  148. Li Xinghai, Scuderi Anne, Letsou Anthea, Virshup David M. B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Mol Cell Biol. 2002 Jun;22(11):3674–3684. doi: 10.1128/MCB.22.11.3674-3684.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Li Xinghai, Virshup David M. Two conserved domains in regulatory B subunits mediate binding to the A subunit of protein phosphatase 2A. Eur J Biochem. 2002 Jan;269(2):546–552. doi: 10.1046/j.0014-2956.2001.02680.x. [DOI] [PubMed] [Google Scholar]
  150. Lin J. W., Sugimori M., Llinás R. R., McGuinness T. L., Greengard P. Effects of synapsin I and calcium/calmodulin-dependent protein kinase II on spontaneous neurotransmitter release in the squid giant synapse. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8257–8261. doi: 10.1073/pnas.87.21.8257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Lin J. W., Wyszynski M., Madhavan R., Sealock R., Kim J. U., Sheng M. Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J Neurosci. 1998 Mar 15;18(6):2017–2027. doi: 10.1523/JNEUROSCI.18-06-02017.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Lin M. J., Lin-Shiau S. Y. Enhanced spontaneous transmitter release at murine motor nerve terminals with cyclosporine. Neuropharmacology. 1999 Jan;38(1):195–198. doi: 10.1016/s0028-3908(98)00178-6. [DOI] [PubMed] [Google Scholar]
  153. Liu J. P., Sim A. T., Robinson P. J. Calcineurin inhibition of dynamin I GTPase activity coupled to nerve terminal depolarization. Science. 1994 Aug 12;265(5174):970–973. doi: 10.1126/science.8052858. [DOI] [PubMed] [Google Scholar]
  154. Liu J., Albers M. W., Wandless T. J., Luan S., Alberg D. G., Belshaw P. J., Cohen P., MacKintosh C., Klee C. B., Schreiber S. L. Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity. Biochemistry. 1992 Apr 28;31(16):3896–3901. doi: 10.1021/bi00131a002. [DOI] [PubMed] [Google Scholar]
  155. Liévens Jean-Charles, Woodman Benjamin, Mahal Amarbirpal, Bates Gillian P. Abnormal phosphorylation of synapsin I predicts a neuronal transmission impairment in the R6/2 Huntington's disease transgenic mice. Mol Cell Neurosci. 2002 Aug;20(4):638–648. doi: 10.1006/mcne.2002.1152. [DOI] [PubMed] [Google Scholar]
  156. Ludowyke R. I., Holst J., Mudge L. M., Sim A. T. Transient translocation and activation of protein phosphatase 2A during mast cell secretion. J Biol Chem. 2000 Mar 3;275(9):6144–6152. doi: 10.1074/jbc.275.9.6144. [DOI] [PubMed] [Google Scholar]
  157. Ludowyke R. I., Peleg I., Beaven M. A., Adelstein R. S. Antigen-induced secretion of histamine and the phosphorylation of myosin by protein kinase C in rat basophilic leukemia cells. J Biol Chem. 1989 Jul 25;264(21):12492–12501. [PubMed] [Google Scholar]
  158. Ludowyke R. I., Peleg I., Beaven M. A., Adelstein R. S. Antigen-induced secretion of histamine and the phosphorylation of myosin by protein kinase C in rat basophilic leukemia cells. J Biol Chem. 1989 Jul 25;264(21):12492–12501. [PubMed] [Google Scholar]
  159. Ludowyke R. I., Scurr L. L., McNally C. M. Calcium ionophore-induced secretion from mast cells correlates with myosin light chain phosphorylation by protein kinase C. J Immunol. 1996 Dec 1;157(11):5130–5138. [PubMed] [Google Scholar]
  160. Ludowyke R. I., Scurr L. L., McNally C. M. Calcium ionophore-induced secretion from mast cells correlates with myosin light chain phosphorylation by protein kinase C. J Immunol. 1996 Dec 1;157(11):5130–5138. [PubMed] [Google Scholar]
  161. Ludowyke R. I., Warton K., Scurr L. L. Inhibition of antigen and calcium ionophore induced secretion from RBL-2H3 cells by phosphatase inhibitors. Cell Biol Int. 1998 Nov;22(11-12):855–865. doi: 10.1006/cbir.1998.0332. [DOI] [PubMed] [Google Scholar]
  162. MacKintosh C., Beattie K. A., Klumpp S., Cohen P., Codd G. A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 1990 May 21;264(2):187–192. doi: 10.1016/0014-5793(90)80245-e. [DOI] [PubMed] [Google Scholar]
  163. MacKintosh C., Beattie K. A., Klumpp S., Cohen P., Codd G. A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 1990 May 21;264(2):187–192. doi: 10.1016/0014-5793(90)80245-e. [DOI] [PubMed] [Google Scholar]
  164. MacKintosh C., Klumpp S. Tautomycin from the bacterium Streptomyces verticillatus. Another potent and specific inhibitor of protein phosphatases 1 and 2A. FEBS Lett. 1990 Dec 17;277(1-2):137–140. doi: 10.1016/0014-5793(90)80828-7. [DOI] [PubMed] [Google Scholar]
  165. Machado J. D., Morales A., Gomez J. F., Borges R. cAmp modulates exocytotic kinetics and increases quantal size in chromaffin cells. Mol Pharmacol. 2001 Sep;60(3):514–520. [PubMed] [Google Scholar]
  166. Mann D. J., Campbell D. G., McGowan C. H., Cohen P. T. Mammalian protein serine/threonine phosphatase 2C: cDNA cloning and comparative analysis of amino acid sequences. Biochim Biophys Acta. 1992 Feb 28;1130(1):100–104. doi: 10.1016/0167-4781(92)90471-b. [DOI] [PubMed] [Google Scholar]
  167. Mann D. J., Dombrádi V., Cohen P. T. Drosophila protein phosphatase V functionally complements a SIT4 mutant in Saccharomyces cerevisiae and its amino-terminal region can confer this complementation to a heterologous phosphatase catalytic domain. EMBO J. 1993 Dec;12(12):4833–4842. doi: 10.1002/j.1460-2075.1993.tb06173.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Marash M., Gerst J. E. t-SNARE dephosphorylation promotes SNARE assembly and exocytosis in yeast. EMBO J. 2001 Feb 1;20(3):411–421. doi: 10.1093/emboj/20.3.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Martin B. A., Oxhorn B. C., Rossow C. R., Perrino B. A. A cluster of basic amino acid residues in calcineurin b participates in the binding of calcineurin to phosphatidylserine vesicles. J Biochem. 2001 May;129(5):843–849. doi: 10.1093/oxfordjournals.jbchem.a002928. [DOI] [PubMed] [Google Scholar]
  170. Matveeva E. A., Whiteheart S. W., Vanaman T. C., Slevin J. T. Phosphorylation of the N-ethylmaleimide-sensitive factor is associated with depolarization-dependent neurotransmitter release from synaptosomes. J Biol Chem. 2001 Jan 22;276(15):12174–12181. doi: 10.1074/jbc.M007394200. [DOI] [PubMed] [Google Scholar]
  171. Mayer P., Jochum C., Schatz H., Pfeiffer A. Okadaic acid indicates a major function for protein phosphatases in stimulus-response coupling of RINm5F rat insulinoma cells. Exp Clin Endocrinol. 1994;102(4):313–319. doi: 10.1055/s-0029-1211297. [DOI] [PubMed] [Google Scholar]
  172. Mayer R. E., Khew-Goodall Y., Stone S. R., Hemmings B. A. Expression and organization of protein phosphatase 2A catalytic subunit genes. Adv Second Messenger Phosphoprotein Res. 1990;24:236–241. [PubMed] [Google Scholar]
  173. McAvoy T., Allen P. B., Obaishi H., Nakanishi H., Takai Y., Greengard P., Nairn A. C., Hemmings H. C., Jr Regulation of neurabin I interaction with protein phosphatase 1 by phosphorylation. Biochemistry. 1999 Sep 28;38(39):12943–12949. doi: 10.1021/bi991227d. [DOI] [PubMed] [Google Scholar]
  174. McCluskey Adam, Sim Alistair T. R., Sakoff Jennette A. Serine-threonine protein phosphatase inhibitors: development of potential therapeutic strategies. J Med Chem. 2002 Mar 14;45(6):1151–1175. doi: 10.1021/jm010066k. [DOI] [PubMed] [Google Scholar]
  175. McCright B., Rivers A. M., Audlin S., Virshup D. M. The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem. 1996 Sep 6;271(36):22081–22089. doi: 10.1074/jbc.271.36.22081. [DOI] [PubMed] [Google Scholar]
  176. Meyer-Alber A., Höcker M., Fetz I., Fornefeld H., Waschulewski I. H., Fölsch U. R., Schmidt W. E. Differential inhibitory effects of serine/threonine phosphatase inhibitors and a calmodulin antagonist on phosphoinositol/calcium- and cyclic adenosine monophosphate-mediated pancreatic amylase secretion. Scand J Gastroenterol. 1995 Apr;30(4):384–391. doi: 10.3109/00365529509093295. [DOI] [PubMed] [Google Scholar]
  177. Miskin J. E., Abrams C. C., Goatley L. C., Dixon L. K. A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science. 1998 Jul 24;281(5376):562–565. doi: 10.1126/science.281.5376.562. [DOI] [PubMed] [Google Scholar]
  178. Moreno C. S., Park S., Nelson K., Ashby D., Hubalek F., Lane W. S., Pallas D. C. WD40 repeat proteins striatin and S/G(2) nuclear autoantigen are members of a novel family of calmodulin-binding proteins that associate with protein phosphatase 2A. J Biol Chem. 2000 Feb 25;275(8):5257–5263. doi: 10.1074/jbc.275.8.5257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Morimoto C., Kiyama A., Kameda K., Ninomiya H., Tsujita T., Okuda H. Mechanism of the stimulatory action of okadaic acid on lipolysis in rat fat cells. J Lipid Res. 2000 Feb;41(2):199–204. [PubMed] [Google Scholar]
  180. Muda Marco, Worby Carolyn A., Simonson-Leff Nancy, Clemens James C., Dixon Jack E. Use of double-stranded RNA-mediated interference to determine the substrates of protein tyrosine kinases and phosphatases. Biochem J. 2002 Aug 15;366(Pt 1):73–77. doi: 10.1042/BJ20020298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Mumby M. C., Walter G. Protein phosphatases and DNA tumor viruses: transformation through the back door? Cell Regul. 1991 Aug;2(8):589–598. doi: 10.1091/mbc.2.8.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Murphy L. I., Jones P. M. Phospho-serine/threonine phosphatases in rat islets of Langerhans: identification and effect on insulin secretion. Mol Cell Endocrinol. 1996 Mar 25;117(2):195–202. doi: 10.1016/0303-7207(95)03747-0. [DOI] [PubMed] [Google Scholar]
  183. Mvumbi L., Stalmans W. High-affinity binding of glycogen-synthase phosphatase to glycogen particles in the liver. Role of glycogen in the inhibition of synthase phosphatase by phosphorylase a. Biochem J. 1987 Sep 1;246(2):367–374. doi: 10.1042/bj2460367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Nichols R. A., Suplick G. R., Brown J. M. Calcineurin-mediated protein dephosphorylation in brain nerve terminals regulates the release of glutamate. J Biol Chem. 1994 Sep 23;269(38):23817–23823. [PubMed] [Google Scholar]
  185. Nunbhakdi-Craig Viyada, Machleidt Thomas, Ogris Egon, Bellotto Dennis, White Charles L., 3rd, Sontag Estelle. Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol. 2002 Aug 26;158(5):967–978. doi: 10.1083/jcb.200206114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Nunbhakdi-Craig Viyada, Machleidt Thomas, Ogris Egon, Bellotto Dennis, White Charles L., 3rd, Sontag Estelle. Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol. 2002 Aug 26;158(5):967–978. doi: 10.1083/jcb.200206114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Ochoa E. L., O'Shea S. M. Concomitant protein phosphorylation and endogenous acetylcholine release induced by nicotine: dependency on neuronal nicotinic receptors and desensitization. Cell Mol Neurobiol. 1994 Aug;14(4):315–340. doi: 10.1007/BF02088714. [DOI] [PubMed] [Google Scholar]
  188. Ogawa S., Katsuragi T., Matsuo K., Furukawa T. Inhibitory effect of okadaic acid on noradrenaline exocytosis from guinea-pig vas deferens. Neurosci Lett. 1994 Aug 29;178(1):144–146. doi: 10.1016/0304-3940(94)90310-7. [DOI] [PubMed] [Google Scholar]
  189. Ogris E., Du X., Nelson K. C., Mak E. K., Yu X. X., Lane W. S., Pallas D. C. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A. J Biol Chem. 1999 May 14;274(20):14382–14391. doi: 10.1074/jbc.274.20.14382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Ogris E., Gibson D. M., Pallas D. C. Protein phosphatase 2A subunit assembly: the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen. Oncogene. 1997 Aug 18;15(8):911–917. doi: 10.1038/sj.onc.1201259. [DOI] [PubMed] [Google Scholar]
  191. Oliveria Seth F., Gomez Lisa L., Dell'Acqua Mark L. Imaging kinase--AKAP79--phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy. J Cell Biol. 2002 Dec 30;160(1):101–112. doi: 10.1083/jcb.200209127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Ollendorff V., Donoghue D. J. The serine/threonine phosphatase PP5 interacts with CDC16 and CDC27, two tetratricopeptide repeat-containing subunits of the anaphase-promoting complex. J Biol Chem. 1997 Dec 19;272(51):32011–32018. doi: 10.1074/jbc.272.51.32011. [DOI] [PubMed] [Google Scholar]
  193. Ollendorff V., Donoghue D. J. The serine/threonine phosphatase PP5 interacts with CDC16 and CDC27, two tetratricopeptide repeat-containing subunits of the anaphase-promoting complex. J Biol Chem. 1997 Dec 19;272(51):32011–32018. doi: 10.1074/jbc.272.51.32011. [DOI] [PubMed] [Google Scholar]
  194. Ostenson Claes-Göran, Sandberg-Nordqvist Ann-Christine, Chen Jie, Hällbrink Mattias, Rotin Daniela, Langel Ulo, Efendic Suad. Overexpression of protein-tyrosine phosphatase PTP sigma is linked to impaired glucose-induced insulin secretion in hereditary diabetic Goto-Kakizaki rats. Biochem Biophys Res Commun. 2002 Mar 8;291(4):945–950. doi: 10.1006/bbrc.2002.6536. [DOI] [PubMed] [Google Scholar]
  195. Peachell P. T., Munday M. R. Regulation of human lung mast cell function by phosphatase inhibitors. J Immunol. 1993 Oct 1;151(7):3808–3816. [PubMed] [Google Scholar]
  196. Peirce M. J., Cox S. E., Munday M. R., Peachell P. T. Preliminary characterization of the role of protein serine/threonine phosphatases in the regulation of human lung mast cell function. Br J Pharmacol. 1997 Jan;120(2):239–246. doi: 10.1038/sj.bjp.0700915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Perrino B. A., Martin B. A. Ca(2+)- and myristoylation-dependent association of calcineurin with phosphatidylserine. J Biochem. 2001 May;129(5):835–841. doi: 10.1093/oxfordjournals.jbchem.a002927. [DOI] [PubMed] [Google Scholar]
  198. Pieribone V. A., Shupliakov O., Brodin L., Hilfiker-Rothenfluh S., Czernik A. J., Greengard P. Distinct pools of synaptic vesicles in neurotransmitter release. Nature. 1995 Jun 8;375(6531):493–497. doi: 10.1038/375493a0. [DOI] [PubMed] [Google Scholar]
  199. Ratcliff H., Jones P. M. Effects of okadaic acid on insulin secretion from rat islets of Langerhans. Biochim Biophys Acta. 1993 Jan 17;1175(2):188–191. doi: 10.1016/0167-4889(93)90022-h. [DOI] [PubMed] [Google Scholar]
  200. Redecker P., Cetin Y. Rodent pancreatic islet cells contain the calcium-binding proteins calcineurin and calretinin. Histochem Cell Biol. 1997 Aug;108(2):133–139. doi: 10.1007/s004180050154. [DOI] [PubMed] [Google Scholar]
  201. Redmon J. B., Olson L. K., Armstrong M. B., Greene M. J., Robertson R. P. Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells. J Clin Invest. 1996 Dec 15;98(12):2786–2793. doi: 10.1172/JCI119105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Reinton N., Collas P., Haugen T. B., Skâlhegg B. S., Hansson V., Jahnsen T., Taskén K. Localization of a novel human A-kinase-anchoring protein, hAKAP220, during spermatogenesis. Dev Biol. 2000 Jul 1;223(1):194–204. doi: 10.1006/dbio.2000.9725. [DOI] [PubMed] [Google Scholar]
  203. Renström E., Ding W. G., Bokvist K., Rorsman P. Neurotransmitter-induced inhibition of exocytosis in insulin-secreting beta cells by activation of calcineurin. Neuron. 1996 Sep;17(3):513–522. doi: 10.1016/s0896-6273(00)80183-x. [DOI] [PubMed] [Google Scholar]
  204. Rettig Jens, Neher Erwin. Emerging roles of presynaptic proteins in Ca++-triggered exocytosis. Science. 2002 Oct 25;298(5594):781–785. doi: 10.1126/science.1075375. [DOI] [PubMed] [Google Scholar]
  205. Ricciarelli R., Azzi A. Regulation of recombinant PKC alpha activity by protein phosphatase 1 and protein phosphatase 2A. Arch Biochem Biophys. 1998 Jul 15;355(2):197–200. doi: 10.1006/abbi.1998.0732. [DOI] [PubMed] [Google Scholar]
  206. Roberts C., Roberts G. A., Löbner K., Bearzatto M., Clark A., Bonifacio E., Christie M. R. Expression of the protein tyrosine phosphatase-like protein IA-2 during pancreatic islet development. J Histochem Cytochem. 2001 Jun;49(6):767–776. doi: 10.1177/002215540104900610. [DOI] [PubMed] [Google Scholar]
  207. Robinson P. J., Liu J. P., Powell K. A., Fykse E. M., Südhof T. C. Phosphorylation of dynamin I and synaptic-vesicle recycling. Trends Neurosci. 1994 Aug;17(8):348–353. doi: 10.1016/0166-2236(94)90179-1. [DOI] [PubMed] [Google Scholar]
  208. Ruediger R., Hentz M., Fait J., Mumby M., Walter G. Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens. J Virol. 1994 Jan;68(1):123–129. doi: 10.1128/jvi.68.1.123-129.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Russell L. C., Whitt S. R., Chen M. S., Chinkers M. Identification of conserved residues required for the binding of a tetratricopeptide repeat domain to heat shock protein 90. J Biol Chem. 1999 Jul 16;274(29):20060–20063. doi: 10.1074/jbc.274.29.20060. [DOI] [PubMed] [Google Scholar]
  210. Rutter G. A. Nutrient-secretion coupling in the pancreatic islet beta-cell: recent advances. Mol Aspects Med. 2001 Dec;22(6):247–284. doi: 10.1016/s0098-2997(01)00013-9. [DOI] [PubMed] [Google Scholar]
  211. Sato Y., Mariot P., Detimary P., Gilon P., Henquin J. C. Okadaic acid-induced decrease in the magnitude and efficacy of the Ca2+ signal in pancreatic beta cells and inhibition of insulin secretion. Br J Pharmacol. 1998 Jan;123(1):97–105. doi: 10.1038/sj.bjp.0701578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Schillace R. V., Voltz J. W., Sim A. T., Shenolikar S., Scott J. D. Multiple interactions within the AKAP220 signaling complex contribute to protein phosphatase 1 regulation. J Biol Chem. 2001 Jan 4;276(15):12128–12134. doi: 10.1074/jbc.M010398200. [DOI] [PubMed] [Google Scholar]
  213. Schneider S. W. Kiss and run mechanism in exocytosis. J Membr Biol. 2001 May 15;181(2):67–76. [PubMed] [Google Scholar]
  214. Schulman E. S. The role of mast cells in inflammatory responses in the lung. Crit Rev Immunol. 1993;13(1):35–70. [PubMed] [Google Scholar]
  215. Scott J. D., Dell'Acqua M. L., Fraser I. D., Tavalin S. J., Lester L. B. Coordination of cAMP signaling events through PKA anchoring. Adv Pharmacol. 2000;47:175–207. doi: 10.1016/s1054-3589(08)60112-x. [DOI] [PubMed] [Google Scholar]
  216. Shenolikar S., Nairn A. C. Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res. 1991;23:1–121. [PubMed] [Google Scholar]
  217. Sheppeck J. E., 2nd, Gauss C. M., Chamberlin A. R. Inhibition of the Ser-Thr phosphatases PP1 and PP2A by naturally occurring toxins. Bioorg Med Chem. 1997 Sep;5(9):1739–1750. doi: 10.1016/s0968-0896(97)00146-6. [DOI] [PubMed] [Google Scholar]
  218. Shibasaki Futoshi, Hallin Ulrika, Uchino Hiroyuki. Calcineurin as a multifunctional regulator. J Biochem. 2002 Jan;131(1):1–15. doi: 10.1093/oxfordjournals.jbchem.a003063. [DOI] [PubMed] [Google Scholar]
  219. Sihra T. S., Nairn A. C., Kloppenburg P., Lin Z., Pouzat C. A role for calcineurin (protein phosphatase-2B) in the regulation of glutamate release. Biochem Biophys Res Commun. 1995 Jul 17;212(2):609–616. doi: 10.1006/bbrc.1995.2013. [DOI] [PubMed] [Google Scholar]
  220. Silverstein A. M., Galigniana M. D., Chen M. S., Owens-Grillo J. K., Chinkers M., Pratt W. B. Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem. 1997 Jun 27;272(26):16224–16230. doi: 10.1074/jbc.272.26.16224. [DOI] [PubMed] [Google Scholar]
  221. Sim A. T., Lloyd H. G., Jarvie P. E., Morrison M., Rostas J. A., Dunkley P. R. Synaptosomal amino acid release: effect of inhibiting protein phosphatases with okadaic acid. Neurosci Lett. 1993 Oct 1;160(2):181–184. doi: 10.1016/0304-3940(93)90408-d. [DOI] [PubMed] [Google Scholar]
  222. Sim A. T., Ratcliffe E., Mumby M. C., Villa-Moruzzi E., Rostas J. A. Differential activities of protein phosphatase types 1 and 2A in cytosolic and particulate fractions from rat forebrain. J Neurochem. 1994 Apr;62(4):1552–1559. doi: 10.1046/j.1471-4159.1994.62041552.x. [DOI] [PubMed] [Google Scholar]
  223. Sim A. T., Ratcliffe E., Mumby M. C., Villa-Moruzzi E., Rostas J. A. Differential activities of protein phosphatase types 1 and 2A in cytosolic and particulate fractions from rat forebrain. J Neurochem. 1994 Apr;62(4):1552–1559. doi: 10.1046/j.1471-4159.1994.62041552.x. [DOI] [PubMed] [Google Scholar]
  224. Sim A. T., Scott J. D. Targeting of PKA, PKC and protein phosphatases to cellular microdomains. Cell Calcium. 1999 Nov;26(5):209–217. doi: 10.1054/ceca.1999.0072. [DOI] [PubMed] [Google Scholar]
  225. Sistiaga A., Sánchez-Prieto J. Protein phosphatase 1 and 2A inhibitors prolong the switch in the control of glutamate release by group I metabotropic glutamate receptors: characterization of the inhibitory pathway. J Neurochem. 2000 Oct;75(4):1566–1574. doi: 10.1046/j.1471-4159.2000.0751566.x. [DOI] [PubMed] [Google Scholar]
  226. Sjöholm A., Honkanen R. E., Berggren P. O. Inhibition of serine/threonine protein phosphatases by secretagogues in insulin-secreting cells. Endocrinology. 1995 Aug;136(8):3391–3397. doi: 10.1210/endo.136.8.7628374. [DOI] [PubMed] [Google Scholar]
  227. Sjöholm Ake, Lehtihet Mikael, Efanov Alexandre M., Zaitsev Sergei V., Berggren Per-Olof, Honkanen Richard E. Glucose metabolites inhibit protein phosphatases and directly promote insulin exocytosis in pancreatic beta-cells. Endocrinology. 2002 Dec;143(12):4592–4598. doi: 10.1210/en.2002-220672. [DOI] [PubMed] [Google Scholar]
  228. Sontag E. Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell Signal. 2001 Jan;13(1):7–16. doi: 10.1016/s0898-6568(00)00123-6. [DOI] [PubMed] [Google Scholar]
  229. Stalmans W., Bollen M., Mvumbi L. Control of glycogen synthesis in health and disease. Diabetes Metab Rev. 1987 Jan;3(1):127–161. doi: 10.1002/dmr.5610030107. [DOI] [PubMed] [Google Scholar]
  230. Steen R. L., Martins S. B., Taskén K., Collas P. Recruitment of protein phosphatase 1 to the nuclear envelope by A-kinase anchoring protein AKAP149 is a prerequisite for nuclear lamina assembly. J Cell Biol. 2000 Sep 18;150(6):1251–1262. doi: 10.1083/jcb.150.6.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Stemmer P. M., Klee C. B. Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry. 1994 Jun 7;33(22):6859–6866. doi: 10.1021/bi00188a015. [DOI] [PubMed] [Google Scholar]
  232. Stemmer P. M., Wang X., Krinks M. H., Klee C. B. Factors responsible for the Ca(2+)-dependent inactivation of calcineurin in brain. FEBS Lett. 1995 Oct 30;374(2):237–240. doi: 10.1016/0014-5793(95)01095-v. [DOI] [PubMed] [Google Scholar]
  233. Stevens C. F., Williams J. H. "Kiss and run" exocytosis at hippocampal synapses. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12828–12833. doi: 10.1073/pnas.230438697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Storchak L. G., Kravchuk M. V., Himmelreich N. H. Okadaic acid and cyclosporin A modulate [(3)H]GABA release from rat brain synaptosomes. Neurochem Int. 2001 Apr;38(5):445–451. doi: 10.1016/s0197-0186(00)00107-8. [DOI] [PubMed] [Google Scholar]
  235. Storrie B., Desjardins M. The biogenesis of lysosomes: is it a kiss and run, continuous fusion and fission process? Bioessays. 1996 Nov;18(11):895–903. doi: 10.1002/bies.950181108. [DOI] [PubMed] [Google Scholar]
  236. Strack S., Kini S., Ebner F. F., Wadzinski B. E., Colbran R. J. Differential cellular and subcellular localization of protein phosphatase 1 isoforms in brain. J Comp Neurol. 1999 Oct 25;413(3):373–384. [PubMed] [Google Scholar]
  237. Strack S., Zaucha J. A., Ebner F. F., Colbran R. J., Wadzinski B. E. Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol. 1998 Mar 23;392(4):515–527. [PubMed] [Google Scholar]
  238. Strack Stefan, Ruediger Ralf, Walter Gernot, Dagda Ruben K., Barwacz Chris A., Cribbs J. Thomas. Protein phosphatase 2A holoenzyme assembly: identification of contacts between B-family regulatory and scaffolding A subunits. J Biol Chem. 2002 Apr 2;277(23):20750–20755. doi: 10.1074/jbc.M202992200. [DOI] [PubMed] [Google Scholar]
  239. Sumiyoshi Eisuke, Sugimoto Asako, Yamamoto Masayuki. Protein phosphatase 4 is required for centrosome maturation in mitosis and sperm meiosis in C. elegans. J Cell Sci. 2002 Apr 1;115(Pt 7):1403–1410. doi: 10.1242/jcs.115.7.1403. [DOI] [PubMed] [Google Scholar]
  240. Sumiyoshi Eisuke, Sugimoto Asako, Yamamoto Masayuki. Protein phosphatase 4 is required for centrosome maturation in mitosis and sperm meiosis in C. elegans. J Cell Sci. 2002 Apr 1;115(Pt 7):1403–1410. doi: 10.1242/jcs.115.7.1403. [DOI] [PubMed] [Google Scholar]
  241. Takei M., Mitsui H., Endo K. Effect of okadaic acid on histamine release from rat peritoneal mast cells activated by anti-IgE. J Pharm Pharmacol. 1993 Aug;45(8):750–752. doi: 10.1111/j.2042-7158.1993.tb07102.x. [DOI] [PubMed] [Google Scholar]
  242. Takekawa M., Maeda T., Saito H. Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO J. 1998 Aug 17;17(16):4744–4752. doi: 10.1093/emboj/17.16.4744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Tamura S., Kobayashi T., Ohnishi M., Chida N., Hanada M. [Structure and function of mammalian protein phosphatase 2C]. Tanpakushitsu Kakusan Koso. 1998 Jun;43(8 Suppl):959–967. [PubMed] [Google Scholar]
  244. Taraska Justin W., Perrais David, Ohara-Imaizumi Mica, Nagamatsu Shinya, Almers Wolfhard. Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci U S A. 2003 Jan 21;100(4):2070–2075. doi: 10.1073/pnas.0337526100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Tong Y., Quirion R., Shen S. H. Cloning and characterization of a novel mammalian PP2C isozyme. J Biol Chem. 1998 Dec 25;273(52):35282–35290. doi: 10.1074/jbc.273.52.35282. [DOI] [PubMed] [Google Scholar]
  246. Toyoda H., Nakai K., Omay S. B., Shima H., Nagao M., Shiku H., Nishikawa M. Differential association of protein Ser/Thr phosphatase types 1 and 2A with the cytoskeleton upon platelet activation. Thromb Haemost. 1996 Dec;76(6):1053–1062. [PubMed] [Google Scholar]
  247. Travis S. M., Berger H. A., Welsh M. J. Protein phosphatase 2C dephosphorylates and inactivates cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11055–11060. doi: 10.1073/pnas.94.20.11055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Travis S. M., Welsh M. J. PP2C gamma: a human protein phosphatase with a unique acidic domain. FEBS Lett. 1997 Aug 4;412(3):415–419. doi: 10.1016/s0014-5793(97)00837-5. [DOI] [PubMed] [Google Scholar]
  249. Trendelenburg G., Hummel M., Riecken E. O., Hanski C. Molecular characterization of AKAP149, a novel A kinase anchor protein with a KH domain. Biochem Biophys Res Commun. 1996 Aug 5;225(1):313–319. doi: 10.1006/bbrc.1996.1172. [DOI] [PubMed] [Google Scholar]
  250. Trinkle-Mulcahy L., Sleeman J. E., Lamond A. I. Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells. J Cell Sci. 2001 Dec;114(Pt 23):4219–4228. doi: 10.1242/jcs.114.23.4219. [DOI] [PubMed] [Google Scholar]
  251. Tsuboi T., Zhao C., Terakawa S., Rutter G. A. Simultaneous evanescent wave imaging of insulin vesicle membrane and cargo during a single exocytotic event. Curr Biol. 2000 Oct 19;10(20):1307–1310. doi: 10.1016/s0960-9822(00)00756-9. [DOI] [PubMed] [Google Scholar]
  252. Tsuboi Takashi, Rutter Guy A. Multiple forms of "kiss-and-run" exocytosis revealed by evanescent wave microscopy. Curr Biol. 2003 Apr 1;13(7):563–567. doi: 10.1016/s0960-9822(03)00176-3. [DOI] [PubMed] [Google Scholar]
  253. Turowski P., Fernandez A., Favre B., Lamb N. J., Hemmings B. A. Differential methylation and altered conformation of cytoplasmic and nuclear forms of protein phosphatase 2A during cell cycle progression. J Cell Biol. 1995 Apr;129(2):397–410. doi: 10.1083/jcb.129.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Ueki K., Muramatsu T., Kincaid R. L. Structure and expression of two isoforms of the murine calmodulin-dependent protein phosphatase regulatory subunit (calcineurin B). Biochem Biophys Res Commun. 1992 Aug 31;187(1):537–543. doi: 10.1016/s0006-291x(05)81527-x. [DOI] [PubMed] [Google Scholar]
  255. Urban G., Golden T., Aragon I. V., Scammell J. G., Dean N. M., Honkanen R. E. Identification of an estrogen-inducible phosphatase (PP5) that converts MCF-7 human breast carcinoma cells into an estrogen-independent phenotype when expressed constitutively. J Biol Chem. 2001 Apr 30;276(29):27638–27646. doi: 10.1074/jbc.M103512200. [DOI] [PubMed] [Google Scholar]
  256. Valtorta F., Meldolesi J., Fesce R. Synaptic vesicles: is kissing a matter of competence? Trends Cell Biol. 2001 Aug;11(8):324–328. doi: 10.1016/s0962-8924(01)02058-x. [DOI] [PubMed] [Google Scholar]
  257. Varadi Aniko, Ainscow E. K., Allan V. J., Rutter G. A. Molecular mechanisms involved in secretory vesicle recruitment to the plasma membrane in beta-cells. Biochem Soc Trans. 2002 Apr;30(2):328–332. doi: 10.1042/. [DOI] [PubMed] [Google Scholar]
  258. Verhage M., Hens J. J., De Grann P. N., Boomsma F., Wiegant V. M., da Silva F. H., Gispen W. H., Ghijsen W. E. Ba2+ replaces Ca2+/calmodulin in the activation of protein phosphatases and in exocytosis of all major transmitters. Eur J Pharmacol. 1995 Nov 30;291(3):387–398. doi: 10.1016/0922-4106(95)90081-0. [DOI] [PubMed] [Google Scholar]
  259. Vickroy T. W., Malphurs W. L., Carriger M. L. Regulation of stimulus-dependent hippocampal acetylcholine release by okadaic acid-sensitive phosphoprotein phosphatases. Neurosci Lett. 1995 May 26;191(3):200–204. doi: 10.1016/0304-3940(95)11576-i. [DOI] [PubMed] [Google Scholar]
  260. Victor R. G., Thomas G. D., Marban E., O'Rourke B. Presynaptic modulation of cortical synaptic activity by calcineurin. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6269–6273. doi: 10.1073/pnas.92.14.6269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Virshup D. M. Protein phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol. 2000 Apr;12(2):180–185. doi: 10.1016/s0955-0674(99)00074-5. [DOI] [PubMed] [Google Scholar]
  262. Voorhoeve P. M., Hijmans E. M., Bernards R. Functional interaction between a novel protein phosphatase 2A regulatory subunit, PR59, and the retinoblastoma-related p107 protein. Oncogene. 1999 Jan 14;18(2):515–524. doi: 10.1038/sj.onc.1202316. [DOI] [PubMed] [Google Scholar]
  263. Wada T., Miyata T., Inagi R., Nangaku M., Wagatsuma M., Suzuki D., Wadzinski B. E., Okubo K., Kurokawa K. Cloning and characterization of a novel subunit of protein serine/threonine phosphatase 4 from mesangial cells. J Am Soc Nephrol. 2001 Dec;12(12):2601–2608. doi: 10.1681/ASN.V12122601. [DOI] [PubMed] [Google Scholar]
  264. Wang Su-Jane. Interaction between FK 506 and isoproterenol in the modulation of glutamate release from cerebrocortical nerve terminals. Neuroreport. 2002 May 24;13(7):983–986. doi: 10.1097/00001756-200205240-00017. [DOI] [PubMed] [Google Scholar]
  265. Wei H., Ashby D. G., Moreno C. S., Ogris E., Yeong F. M., Corbett A. H., Pallas D. C. Carboxymethylation of the PP2A catalytic subunit in Saccharomyces cerevisiae is required for efficient interaction with the B-type subunits Cdc55p and Rts1p. J Biol Chem. 2001 Jan 12;276(2):1570–1577. doi: 10.1074/jbc.M008694200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Weinbrenner C., Baines C. P., Liu G. S., Armstrong S. C., Ganote C. E., Walsh A. H., Honkanen R. E., Cohen M. V., Downey J. M. Fostriecin, an inhibitor of protein phosphatase 2A, limits myocardial infarct size even when administered after onset of ischemia. Circulation. 1998 Sep 1;98(9):899–905. doi: 10.1161/01.cir.98.9.899. [DOI] [PubMed] [Google Scholar]
  267. Wenk J., Trompeter H. I., Pettrich K. G., Cohen P. T., Campbell D. G., Mieskes G. Molecular cloning and primary structure of a protein phosphatase 2C isoform. FEBS Lett. 1992 Feb 3;297(1-2):135–138. doi: 10.1016/0014-5793(92)80344-g. [DOI] [PubMed] [Google Scholar]
  268. Westphal R. S., Tavalin S. J., Lin J. W., Alto N. M., Fraser I. D., Langeberg L. K., Sheng M., Scott J. D. Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science. 1999 Jul 2;285(5424):93–96. doi: 10.1126/science.285.5424.93. [DOI] [PubMed] [Google Scholar]
  269. Witczak O., Skålhegg B. S., Keryer G., Bornens M., Taskén K., Jahnsen T., Orstavik S. Cloning and characterization of a cDNA encoding an A-kinase anchoring protein located in the centrosome, AKAP450. EMBO J. 1999 Apr 1;18(7):1858–1868. doi: 10.1093/emboj/18.7.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Xie H., Clarke S. An enzymatic activity in bovine brain that catalyzes the reversal of the C-terminal methyl esterification of protein phosphatase 2A. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1710–1715. doi: 10.1006/bbrc.1994.2383. [DOI] [PubMed] [Google Scholar]
  271. Xie H., Clarke S. Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction. J Biol Chem. 1993 Jun 25;268(18):13364–13371. [PubMed] [Google Scholar]
  272. Xie H., Clarke S. Protein phosphatase 2A is reversibly modified by methyl esterification at its C-terminal leucine residue in bovine brain. J Biol Chem. 1994 Jan 21;269(3):1981–1984. [PubMed] [Google Scholar]
  273. Yan Z., Fedorov S. A., Mumby M. C., Williams R. S. PR48, a novel regulatory subunit of protein phosphatase 2A, interacts with Cdc6 and modulates DNA replication in human cells. Mol Cell Biol. 2000 Feb;20(3):1021–1029. doi: 10.1128/mcb.20.3.1021-1029.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Yan Z., Hsieh-Wilson L., Feng J., Tomizawa K., Allen P. B., Fienberg A. A., Nairn A. C., Greengard P. Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat Neurosci. 1999 Jan;2(1):13–17. doi: 10.1038/4516. [DOI] [PubMed] [Google Scholar]
  275. Yang J., Hurley T. D., DePaoli-Roach A. A. Interaction of inhibitor-2 with the catalytic subunit of type 1 protein phosphatase. Identification of a sequence analogous to the consensus type 1 protein phosphatase-binding motif. J Biol Chem. 2000 Jul 28;275(30):22635–22644. doi: 10.1074/jbc.M003082200. [DOI] [PubMed] [Google Scholar]
  276. Yu X. X., Du X., Moreno C. S., Green R. E., Ogris E., Feng Q., Chou L., McQuoid M. J., Pallas D. C. Methylation of the protein phosphatase 2A catalytic subunit is essential for association of Balpha regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen. Mol Biol Cell. 2001 Jan;12(1):185–199. doi: 10.1091/mbc.12.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Zhang W., Li J. L., Hosaka M., Janz R., Shelton J. M., Albright G. M., Richardson J. A., Südhof T. C., Victor R. G. Cyclosporine A-induced hypertension involves synapsin in renal sensory nerve endings. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9765–9770. doi: 10.1073/pnas.170160397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  278. Zhao S., Sancar A. Human blue-light photoreceptor hCRY2 specifically interacts with protein serine/threonine phosphatase 5 and modulates its activity. Photochem Photobiol. 1997 Nov;66(5):727–731. doi: 10.1111/j.1751-1097.1997.tb03214.x. [DOI] [PubMed] [Google Scholar]
  279. Zhou Guisheng, Mihindukulasuriya Kathie A., MacCorkle-Chosnek Rebecca A., Van Hooser Aaron, Hu Mickey C-T, Brinkley B. R., Tan Tse-Hua. Protein phosphatase 4 is involved in tumor necrosis factor-alpha-induced activation of c-Jun N-terminal kinase. J Biol Chem. 2001 Nov 6;277(8):6391–6398. doi: 10.1074/jbc.M107014200. [DOI] [PubMed] [Google Scholar]
  280. Zhou Jin, Pham Huong T., Ruediger Ralf, Walter Gernot. Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A: differences in expression, subunit interaction, and evolution. Biochem J. 2003 Jan 15;369(Pt 2):387–398. doi: 10.1042/BJ20021244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Zhu D., Cardenas M. E., Heitman J. Myristoylation of calcineurin B is not required for function or interaction with immunophilin-immunosuppressant complexes in the yeast Saccharomyces cerevisiae. J Biol Chem. 1995 Oct 20;270(42):24831–24838. doi: 10.1074/jbc.270.42.24831. [DOI] [PubMed] [Google Scholar]
  282. Zolnierowicz S. Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochem Pharmacol. 2000 Oct 15;60(8):1225–1235. doi: 10.1016/s0006-2952(00)00424-x. [DOI] [PubMed] [Google Scholar]
  283. Zolnierowicz S., Van Hoof C., Andjelković N., Cron P., Stevens I., Merlevede W., Goris J., Hemmings B. A. The variable subunit associated with protein phosphatase 2A0 defines a novel multimember family of regulatory subunits. Biochem J. 1996 Jul 1;317(Pt 1):187–194. doi: 10.1042/bj3170187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. da Cruz e Silva E. F., Fox C. A., Ouimet C. C., Gustafson E., Watson S. J., Greengard P. Differential expression of protein phosphatase 1 isoforms in mammalian brain. J Neurosci. 1995 May;15(5 Pt 1):3375–3389. doi: 10.1523/JNEUROSCI.15-05-03375.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  285. de Jong R. S., Mulder N. H., Uges D. R., Sleijfer D. T., Höppener F. J., Groen H. J., Willemse P. H., van der Graaf W. T., de Vries E. G. Phase I and pharmacokinetic study of the topoisomerase II catalytic inhibitor fostriecin. Br J Cancer. 1999 Feb;79(5-6):882–887. doi: 10.1038/sj.bjc.6690141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. de Vries K. J., Geijtenbeek A., Brian E. C., de Graan P. N., Ghijsen W. E., Verhage M. Dynamics of munc18-1 phosphorylation/dephosphorylation in rat brain nerve terminals. Eur J Neurosci. 2000 Jan;12(1):385–390. doi: 10.1046/j.1460-9568.2000.00931.x. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Multimedia adjunct
Download video file (1.2MB, mpg)

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES