Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 15;374(Pt 1):193–198. doi: 10.1042/BJ20030622

Definition of structural elements in Plasmodium vivax and P. knowlesi Duffy-binding domains necessary for erythrocyte invasion.

Saurabh K Singh 1, Agam P Singh 1, Sunita Pandey 1, Syed S Yazdani 1, Chetan E Chitnis 1, Amit Sharma 1
PMCID: PMC1223586  PMID: 12775212

Abstract

Plasmodium vivax and P. knowlesi use the Duffy antigen as a receptor to invade human erythrocytes. Duffy-binding ligands belong to a family of erythrocyte-binding proteins that bind erythrocyte receptors to mediate invasion. Receptor-binding domains in erythrocyte-binding proteins lie in conserved cysteine-rich regions called Duffy-binding-like domains. In the present study, we report an analysis of the overall three-dimensional architecture of P. vivax and P. knowlesi Duffy-binding domains based on mild proteolysis and supportive-functional assays. Our proteolysis experiments indicate that these domains are built of two distinct subdomains. The N-terminal region from Cys-1-4 (C1-C4) forms a stable non-functional subdomain. The region spanning C5-C12 forms another subdomain, which is capable of binding Duffy antigen. These subdomains are joined by a protease-sensitive linker. Results from deletion constructs, designed for expression of truncated proteins on COS cell surface, show that regions containing C5-C8 of the Duffy-binding domains are sufficient for the binding receptor. Therefore the central region of Duffy-binding domains, which is flanked by two non-functional regions, is responsible for receptor recognition. Moreover, the minimal Duffy-binding region identified here is capable of folding into a functionally competent module. These studies pave the way for understanding the architecture of Duffy-binding domains and their interactions with host receptors.

Full Text

The Full Text of this article is available as a PDF (175.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. H., Blair P. L., Kaneko O., Peterson D. S. An expanding ebl family of Plasmodium falciparum. Trends Parasitol. 2001 Jun;17(6):297–299. doi: 10.1016/s1471-4922(01)01948-1. [DOI] [PubMed] [Google Scholar]
  2. Adams J. H., Sim B. K., Dolan S. A., Fang X., Kaslow D. C., Miller L. H. A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7085–7089. doi: 10.1073/pnas.89.15.7085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baruch D. I., Pasloske B. L., Singh H. B., Bi X., Ma X. C., Feldman M., Taraschi T. F., Howard R. J. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995 Jul 14;82(1):77–87. doi: 10.1016/0092-8674(95)90054-3. [DOI] [PubMed] [Google Scholar]
  4. Buffet P. A., Gamain B., Scheidig C., Baruch D., Smith J. D., Hernandez-Rivas R., Pouvelle B., Oishi S., Fujii N., Fusai T. Plasmodium falciparum domain mediating adhesion to chondroitin sulfate A: a receptor for human placental infection. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12743–12748. doi: 10.1073/pnas.96.22.12743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Camus D., Hadley T. J. A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science. 1985 Nov 1;230(4725):553–556. doi: 10.1126/science.3901257. [DOI] [PubMed] [Google Scholar]
  6. Chen Q., Barragan A., Fernandez V., Sundström A., Schlichtherle M., Sahlén A., Carlson J., Datta S., Wahlgren M. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med. 1998 Jan 5;187(1):15–23. doi: 10.1084/jem.187.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen Q., Heddini A., Barragan A., Fernandez V., Pearce S. F., Wahlgren M. The semiconserved head structure of Plasmodium falciparum erythrocyte membrane protein 1 mediates binding to multiple independent host receptors. J Exp Med. 2000 Jul 3;192(1):1–10. doi: 10.1084/jem.192.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chitnis C. E., Miller L. H. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J Exp Med. 1994 Aug 1;180(2):497–506. doi: 10.1084/jem.180.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen G. H., Wilcox W. C., Sodora D. L., Long D., Levin J. Z., Eisenberg R. J. Expression of herpes simplex virus type 1 glycoprotein D deletion mutants in mammalian cells. J Virol. 1988 Jun;62(6):1932–1940. doi: 10.1128/jvi.62.6.1932-1940.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  11. Gilberger Tim-Wolf, Thompson Jennifer K., Triglia Tony, Good Robert T., Duraisingh Manoj T., Cowman Alan F. A novel erythrocyte binding antigen-175 paralogue from Plasmodium falciparum defines a new trypsin-resistant receptor on human erythrocytes. J Biol Chem. 2003 Jan 29;278(16):14480–14486. doi: 10.1074/jbc.M211446200. [DOI] [PubMed] [Google Scholar]
  12. Horuk R., Chitnis C. E., Darbonne W. C., Colby T. J., Rybicki A., Hadley T. J., Miller L. H. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science. 1993 Aug 27;261(5125):1182–1184. doi: 10.1126/science.7689250. [DOI] [PubMed] [Google Scholar]
  13. Maier Alexander G., Duraisingh Manoj T., Reeder John C., Patel Sheral S., Kazura James W., Zimmerman Peter A., Cowman Alan F. Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med. 2002 Dec 9;9(1):87–92. doi: 10.1038/nm807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mayer D. C. Ghislaine, Mu Jian-Bing, Feng Xiaorong, Su Xin-zhuan, Miller Louis H. Polymorphism in a Plasmodium falciparum erythrocyte-binding ligand changes its receptor specificity. J Exp Med. 2002 Dec 2;196(11):1523–1528. doi: 10.1084/jem.20020750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mayer D. C., Kaneko O., Hudson-Taylor D. E., Reid M. E., Miller L. H. Characterization of a Plasmodium falciparum erythrocyte-binding protein paralogous to EBA-175. Proc Natl Acad Sci U S A. 2001 Apr 17;98(9):5222–5227. doi: 10.1073/pnas.081075398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miller L. H., Mason S. J., Clyde D. F., McGinniss M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med. 1976 Aug 5;295(6):302–304. doi: 10.1056/NEJM197608052950602. [DOI] [PubMed] [Google Scholar]
  17. Miller L. H., Mason S. J., Dvorak J. A., McGinniss M. H., Rothman I. K. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science. 1975 Aug 15;189(4202):561–563. doi: 10.1126/science.1145213. [DOI] [PubMed] [Google Scholar]
  18. Ranjan A., Chitnis C. E. Mapping regions containing binding residues within functional domains of Plasmodium vivax and Plasmodium knowlesi erythrocyte-binding proteins. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14067–14072. doi: 10.1073/pnas.96.24.14067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rowe J. A., Moulds J. M., Newbold C. I., Miller L. H. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature. 1997 Jul 17;388(6639):292–295. doi: 10.1038/40888. [DOI] [PubMed] [Google Scholar]
  20. Sim B. K., Chitnis C. E., Wasniowska K., Hadley T. J., Miller L. H. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science. 1994 Jun 24;264(5167):1941–1944. doi: 10.1126/science.8009226. [DOI] [PubMed] [Google Scholar]
  21. Sim B. K., Orlandi P. A., Haynes J. D., Klotz F. W., Carter J. M., Camus D., Zegans M. E., Chulay J. D. Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion. J Cell Biol. 1990 Nov;111(5 Pt 1):1877–1884. doi: 10.1083/jcb.111.5.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Singh Agam P., Puri Sunil K., Chitnis Chetan E. Antibodies raised against receptor-binding domain of Plasmodium knowlesi Duffy binding protein inhibit erythrocyte invasion. Mol Biochem Parasitol. 2002 Apr 30;121(1):21–31. doi: 10.1016/s0166-6851(02)00017-8. [DOI] [PubMed] [Google Scholar]
  23. Singh S., Pandey K., Chattopadhayay R., Yazdani S. S., Lynn A., Bharadwaj A., Ranjan A., Chitnis C. Biochemical, biophysical, and functional characterization of bacterially expressed and refolded receptor binding domain of Plasmodium vivax duffy-binding protein. J Biol Chem. 2001 Mar 13;276(20):17111–17116. doi: 10.1074/jbc.M101531200. [DOI] [PubMed] [Google Scholar]
  24. Smith J. D., Chitnis C. E., Craig A. G., Roberts D. J., Hudson-Taylor D. E., Peterson D. S., Pinches R., Newbold C. I., Miller L. H. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995 Jul 14;82(1):101–110. doi: 10.1016/0092-8674(95)90056-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith J. D., Craig A. G., Kriek N., Hudson-Taylor D., Kyes S., Fagan T., Fagen T., Pinches R., Baruch D. I., Newbold C. I. Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1766–1771. doi: 10.1073/pnas.040545897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Su X. Z., Heatwole V. M., Wertheimer S. P., Guinet F., Herrfeldt J. A., Peterson D. S., Ravetch J. A., Wellems T. E. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995 Jul 14;82(1):89–100. doi: 10.1016/0092-8674(95)90055-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES