Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 1;374(Pt 2):529–535. doi: 10.1042/BJ20030412

Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima.

Giovanni Maglia 1, Masood H Javed 1, Rudolf K Allemann 1
PMCID: PMC1223599  PMID: 12765545

Abstract

DHFR (dihydrofolate reductase) catalyses the metabolically important reduction of 7,8-dihydrofolate by NADPH. DHFR from the hyperthermophilic bacterium Thermotoga maritima (TmDHFR), which shares similarity with DHFR from Escherichia coli, has previously been characterized structurally. Its tertiary structure is similar to that of DHFR from E. coli but it is the only DHFR characterized so far that relies on dimerization for stability. The midpoint of the thermal unfolding of TmDHFR was at approx. 83 degrees C, which was 30 degrees C higher than the melting temperature of DHFR from E. coli. The turnover and the hydride-transfer rates in the kinetic scheme of TmDHFR were derived from measurements of the steady-state and pre-steady-state kinetics using absorbance and stopped-flow fluorescence spectroscopy. The rate constant for hydride transfer was found to depend strongly on the temperature and the pH of the solution. Hydride transfer was slow (0.14 s(-1) at 25 degrees C) and at least partially rate limiting at low temperatures but increased dramatically with temperature. At 80 degrees C the hydride-transfer rate of TmDHFR was 20 times lower than that observed for the E. coli enzyme at its physiological temperature. Hydride transfer depended on ionization of a single group in the active site with a p K(a) of 6.0. While at 30 degrees C, turnover of substrate by TmDHFR was almost two orders of magnitude slower than by DHFR from E. coli; the steady-state rates of the two enzymes differed only 8-fold at their respective working temperatures.

Full Text

The Full Text of this article is available as a PDF (166.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal Pratul K., Billeter Salomon R., Rajagopalan P. T. Ravi, Benkovic Stephen J., Hammes-Schiffer Sharon. Network of coupled promoting motions in enzyme catalysis. Proc Natl Acad Sci U S A. 2002 Feb 26;99(5):2794–2799. doi: 10.1073/pnas.052005999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Appleman J. R., Beard W. A., Delcamp T. J., Prendergast N. J., Freisheim J. H., Blakley R. L. Unusual transient- and steady-state kinetic behavior is predicted by the kinetic scheme operational for recombinant human dihydrofolate reductase. J Biol Chem. 1990 Feb 15;265(5):2740–2748. [PubMed] [Google Scholar]
  3. Blakley R. L., Appleman J. R., Freisheim J. H., Jablonsky M. J. 13C and 15N nuclear magnetic resonance evidence that the active site carboxyl group of dihydrofolate reductase is not involved in the relay of a proton to substrate. Arch Biochem Biophys. 1993 Nov 1;306(2):501–509. doi: 10.1006/abbi.1993.1543. [DOI] [PubMed] [Google Scholar]
  4. Cameron C. E., Benkovic S. J. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant. Biochemistry. 1997 Dec 16;36(50):15792–15800. doi: 10.1021/bi9716231. [DOI] [PubMed] [Google Scholar]
  5. Casarotto M. G., Basran J., Badii R., Sze K. H., Roberts G. C. Direct measurement of the pKa of aspartic acid 26 in Lactobacillus casei dihydrofolate reductase: implications for the catalytic mechanism. Biochemistry. 1999 Jun 22;38(25):8038–8044. doi: 10.1021/bi990301p. [DOI] [PubMed] [Google Scholar]
  6. Chen J. T., Taira K., Tu C. P., Benkovic S. J. Probing the functional role of phenylalanine-31 of Escherichia coli dihydrofolate reductase by site-directed mutagenesis. Biochemistry. 1987 Jun 30;26(13):4093–4100. doi: 10.1021/bi00387a053. [DOI] [PubMed] [Google Scholar]
  7. Dams T., Auerbach G., Bader G., Jacob U., Ploom T., Huber R., Jaenicke R. The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability. J Mol Biol. 2000 Mar 31;297(3):659–672. doi: 10.1006/jmbi.2000.3570. [DOI] [PubMed] [Google Scholar]
  8. Dams T., Jaenicke R. Dihydrofolate reductase from Thermotoga maritima. Methods Enzymol. 2001;331:305–317. doi: 10.1016/s0076-6879(01)31068-6. [DOI] [PubMed] [Google Scholar]
  9. Dams T., Jaenicke R. Stability and folding of dihydrofolate reductase from the hyperthermophilic bacterium Thermotoga maritima. Biochemistry. 1999 Jul 13;38(28):9169–9178. doi: 10.1021/bi990635e. [DOI] [PubMed] [Google Scholar]
  10. Epstein D. M., Benkovic S. J., Wright P. E. Dynamics of the dihydrofolate reductase-folate complex: catalytic sites and regions known to undergo conformational change exhibit diverse dynamical features. Biochemistry. 1995 Sep 5;34(35):11037–11048. doi: 10.1021/bi00035a009. [DOI] [PubMed] [Google Scholar]
  11. Fierke C. A., Johnson K. A., Benkovic S. J. Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli. Biochemistry. 1987 Jun 30;26(13):4085–4092. doi: 10.1021/bi00387a052. [DOI] [PubMed] [Google Scholar]
  12. Ionescu R. M., Smith V. F., O'Neill J. C., Jr, Matthews C. R. Multistate equilibrium unfolding of Escherichia coli dihydrofolate reductase: thermodynamic and spectroscopic description of the native, intermediate, and unfolded ensembles. Biochemistry. 2000 Aug 8;39(31):9540–9550. doi: 10.1021/bi000511y. [DOI] [PubMed] [Google Scholar]
  13. Jaenicke R. Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity? Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):2962–2964. doi: 10.1073/pnas.97.7.2962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jaenicke R. Protein stability and molecular adaptation to extreme conditions. Eur J Biochem. 1991 Dec 18;202(3):715–728. doi: 10.1111/j.1432-1033.1991.tb16426.x. [DOI] [PubMed] [Google Scholar]
  15. Jeong S. S., Gready J. E. A method of preparation and purification of (4R)-deuterated-reduced nicotinamide adenine dinucleotide phosphate. Anal Biochem. 1994 Sep;221(2):273–277. doi: 10.1006/abio.1994.1411. [DOI] [PubMed] [Google Scholar]
  16. Kane J. F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol. 1995 Oct;6(5):494–500. doi: 10.1016/0958-1669(95)80082-4. [DOI] [PubMed] [Google Scholar]
  17. Maharaj G., Selinsky B. S., Appleman J. R., Perlman M., London R. E., Blakley R. L. Dissociation constants for dihydrofolic acid and dihydrobiopterin and implications for mechanistic models for dihydrofolate reductase. Biochemistry. 1990 May 15;29(19):4554–4560. doi: 10.1021/bi00471a008. [DOI] [PubMed] [Google Scholar]
  18. Miller G. P., Benkovic S. J. Deletion of a highly motional residue affects formation of the Michaelis complex for Escherichia coli dihydrofolate reductase. Biochemistry. 1998 May 5;37(18):6327–6335. doi: 10.1021/bi972922t. [DOI] [PubMed] [Google Scholar]
  19. Miller G. P., Benkovic S. J. Stretching exercises--flexibility in dihydrofolate reductase catalysis. Chem Biol. 1998 May;5(5):R105–R113. doi: 10.1016/s1074-5521(98)90616-0. [DOI] [PubMed] [Google Scholar]
  20. Ohmae E., Kurumiya T., Makino S., Gekko K. Acid and thermal unfolding of Escherichia coli dihydrofolate reductase. J Biochem. 1996 Nov;120(5):946–953. doi: 10.1093/oxfordjournals.jbchem.a021511. [DOI] [PubMed] [Google Scholar]
  21. Orr G. A., Blanchard J. S. High-performance ion-exchange separation of oxidized and reduced nicotinamide adenine dinucleotides. Anal Biochem. 1984 Oct;142(1):232–234. doi: 10.1016/0003-2697(84)90544-x. [DOI] [PubMed] [Google Scholar]
  22. Osborne M. J., Schnell J., Benkovic S. J., Dyson H. J., Wright P. E. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Biochemistry. 2001 Aug 21;40(33):9846–9859. doi: 10.1021/bi010621k. [DOI] [PubMed] [Google Scholar]
  23. Reyes V. M., Sawaya M. R., Brown K. A., Kraut J. Isomorphous crystal structures of Escherichia coli dihydrofolate reductase complexed with folate, 5-deazafolate, and 5,10-dideazatetrahydrofolate: mechanistic implications. Biochemistry. 1995 Feb 28;34(8):2710–2723. doi: 10.1021/bi00008a039. [DOI] [PubMed] [Google Scholar]
  24. Sawaya M. R., Kraut J. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry. 1997 Jan 21;36(3):586–603. doi: 10.1021/bi962337c. [DOI] [PubMed] [Google Scholar]
  25. Selinsky B. S., Perlman M. E., London R. E., Unkefer C. J., Mitchell J., Blakley R. L. 13C and 15N nuclear magnetic resonance evidence of the ionization state of substrates bound to bovine dihydrofolate reductase. Biochemistry. 1990 Feb 6;29(5):1290–1296. doi: 10.1021/bi00457a026. [DOI] [PubMed] [Google Scholar]
  26. Svingor A., Kardos J., Hajdú I., Németh A., Závodszky P. A better enzyme to cope with cold. Comparative flexibility studies on psychrotrophic, mesophilic, and thermophilic IPMDHs. J Biol Chem. 2001 May 21;276(30):28121–28125. doi: 10.1074/jbc.M104432200. [DOI] [PubMed] [Google Scholar]
  27. Walsh K. A., Daniel R. M., Morgan H. W. A soluble NADH dehydrogenase (NADH: ferricyanide oxidoreductase) from Thermus aquaticus strain T351. Biochem J. 1983 Feb 1;209(2):427–433. doi: 10.1042/bj2090427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilquet V., Gaspar J. A., van de Lande M., Van de Casteele M., Legrain C., Meiering E. M., Glansdorff N. Purification and characterization of recombinant Thermotoga maritima dihydrofolate reductase. Eur J Biochem. 1998 Aug 1;255(3):628–637. doi: 10.1046/j.1432-1327.1998.2550628.x. [DOI] [PubMed] [Google Scholar]
  29. Závodszky P., Kardos J., Svingor, Petsko G. A. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7406–7411. doi: 10.1073/pnas.95.13.7406. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES