Abstract
Human circulating PBMC (peripheral blood mononuclear cells) contain three calpain isoforms distinguishable on the basis of their chromatographic properties. Two of these proteases belong to the ubiquitous calpain subfamily, corresponding to the classical mu- and m-calpain forms. The third, which shows peculiar activating and regulatory properties, is an alternatively spliced calpain 3 (p94) form. This new calpain differs from calpain 3 in that it has lost IS1 insertion and exon 15, a lysine-rich sequence regarded as a nuclear translocation signal. PBMC p94-calpain undergoes activation and inactivation without the accumulation of a low-Ca2+-requiring form that is typical of the classical activation processes of mu- and m-calpain. Furthermore, it differs from the ubiquitous forms in that it displays a lower sensitivity to calpastatin. On the basis of these selective properties, it can be postulated that PBMC p94-calpain can be activated in response to specific stimuli that are not effective on the other calpain isoenzymes. The enzyme is preferentially expressed in B- and T-lymphocytes, whereas it is poorly expressed in natural killer cells and almost undetectable in polymorphonuclear cells. This distribution might reflect the specific function of this protease, which is preferentially present in cells devoted to the production of the humoral, rather than to the cellular, immune response.
Full Text
The Full Text of this article is available as a PDF (164.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arthur J. S., Mykles D. L. Calpain zymography with casein or fluorescein isothiocyanate casein. Methods Mol Biol. 2000;144:109–116. doi: 10.1385/1-59259-050-0:109. [DOI] [PubMed] [Google Scholar]
- Averna M., De Tullio R., Salamino F., Melloni E., Pontremoli S. Phosphorylation of rat brain calpastatins by protein kinase C. FEBS Lett. 1999 Apr 30;450(1-2):13–16. doi: 10.1016/s0014-5793(99)00461-5. [DOI] [PubMed] [Google Scholar]
- Azam M., Andrabi S. S., Sahr K. E., Kamath L., Kuliopulos A., Chishti A. H. Disruption of the mouse mu-calpain gene reveals an essential role in platelet function. Mol Cell Biol. 2001 Mar;21(6):2213–2220. doi: 10.1128/MCB.21.6.2213-2220.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azuma M., Fukiage C., Higashine M., Nakajima T., Ma H., Shearer T. R. Identification and characterization of a retina-specific calpain (Rt88) from rat. Curr Eye Res. 2000 Sep;21(3):710–720. [PubMed] [Google Scholar]
- Beutler E., West C., Blume K. G. The removal of leukocytes and platelets from whole blood. J Lab Clin Med. 1976 Aug;88(2):328–333. [PubMed] [Google Scholar]
- Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
- Carafoli E., Molinari M. Calpain: a protease in search of a function? Biochem Biophys Res Commun. 1998 Jun 18;247(2):193–203. doi: 10.1006/bbrc.1998.8378. [DOI] [PubMed] [Google Scholar]
- Carragher Neil O., Frame Margaret C. Calpain: a role in cell transformation and migration. Int J Biochem Cell Biol. 2002 Dec;34(12):1539–1543. doi: 10.1016/s1357-2725(02)00069-9. [DOI] [PubMed] [Google Scholar]
- Dainese Enrico, Minafra Roberto, Sabatucci Annalaura, Vachette Patrice, Melloni Edon, Cozzani Ivo. Conformational changes of calpain from human erythrocytes in the presence of Ca2+. J Biol Chem. 2002 Aug 19;277(43):40296–40301. doi: 10.1074/jbc.M204471200. [DOI] [PubMed] [Google Scholar]
- De Tullio R., Averna M., Salamino F., Pontremoli S., Melloni E. Differential degradation of calpastatin by mu- and m-calpain in Ca(2+)-enriched human neuroblastoma LAN-5 cells. FEBS Lett. 2000 Jun 9;475(1):17–21. doi: 10.1016/s0014-5793(00)01613-6. [DOI] [PubMed] [Google Scholar]
- Dutt Previn, Spriggs Cherie N., Davies Peter L., Jia Zongchao, Elce John S. Origins of the difference in Ca2+ requirement for activation of mu- and m-calpain. Biochem J. 2002 Oct 1;367(Pt 1):263–269. doi: 10.1042/BJ20020485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elce J. S., Hegadorn C., Arthur J. S. Autolysis, Ca2+ requirement, and heterodimer stability in m-calpain. J Biol Chem. 1997 Apr 25;272(17):11268–11275. doi: 10.1074/jbc.272.17.11268. [DOI] [PubMed] [Google Scholar]
- Fukiage Chiho, Nakajima Emi, Ma Hong, Azuma Mitsuyoshi, Shearer Thomas R. Characterization and regulation of lens-specific calpain Lp82. J Biol Chem. 2002 Mar 19;277(23):20678–20685. doi: 10.1074/jbc.M200697200. [DOI] [PubMed] [Google Scholar]
- Herasse M., Ono Y., Fougerousse F., Kimura E., Stockholm D., Beley C., Montarras D., Pinset C., Sorimachi H., Suzuki K. Expression and functional characteristics of calpain 3 isoforms generated through tissue-specific transcriptional and posttranscriptional events. Mol Cell Biol. 1999 Jun;19(6):4047–4055. doi: 10.1128/mcb.19.6.4047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang Y., Wang K. K. The calpain family and human disease. Trends Mol Med. 2001 Aug;7(8):355–362. doi: 10.1016/s1471-4914(01)02049-4. [DOI] [PubMed] [Google Scholar]
- Imajoh S., Aoki K., Ohno S., Emori Y., Kawasaki H., Sugihara H., Suzuki K. Molecular cloning of the cDNA for the large subunit of the high-Ca2+-requiring form of human Ca2+-activated neutral protease. Biochemistry. 1988 Oct 18;27(21):8122–8128. doi: 10.1021/bi00421a022. [DOI] [PubMed] [Google Scholar]
- Kinbara K., Ishiura S., Tomioka S., Sorimachi H., Jeong S. Y., Amano S., Kawasaki H., Kolmerer B., Kimura S., Labeit S. Purification of native p94, a muscle-specific calpain, and characterization of its autolysis. Biochem J. 1998 Nov 1;335(Pt 3):589–596. doi: 10.1042/bj3350589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lu Tao, Xu Ying, Mericle Maura T., Mellgren Ronald L. Participation of the conventional calpains in apoptosis. Biochim Biophys Acta. 2002 Jun 12;1590(1-3):16–26. doi: 10.1016/s0167-4889(02)00193-3. [DOI] [PubMed] [Google Scholar]
- Ma H., Fukiage C., Azuma M., Shearer T. R. Cloning and expression of mRNA for calpain Lp82 from rat lens: splice variant of p94. Invest Ophthalmol Vis Sci. 1998 Feb;39(2):454–461. [PubMed] [Google Scholar]
- Melloni E., Michetti M., Salamino F., Minafra R., Pontremoli S. Modulation of the calpain autoproteolysis by calpastatin and phospholipids. Biochem Biophys Res Commun. 1996 Dec 4;229(1):193–197. doi: 10.1006/bbrc.1996.1779. [DOI] [PubMed] [Google Scholar]
- Melloni E., Michetti M., Salamino F., Pontremoli S. Molecular and functional properties of a calpain activator protein specific for mu-isoforms. J Biol Chem. 1998 May 22;273(21):12827–12831. doi: 10.1074/jbc.273.21.12827. [DOI] [PubMed] [Google Scholar]
- Michetti M., Salamino F., Tedesco I., Averna M., Minafra R., Melloni E., Pontremoli S. Autolysis of human erythrocyte calpain produces two active enzyme forms with different cell localization. FEBS Lett. 1996 Aug 19;392(1):11–15. doi: 10.1016/0014-5793(96)00775-2. [DOI] [PubMed] [Google Scholar]
- Moldoveanu Tudor, Hosfield Christopher M., Lim Daniel, Elce John S., Jia Zongchao, Davies Peter L. A Ca(2+) switch aligns the active site of calpain. Cell. 2002 Mar 8;108(5):649–660. doi: 10.1016/s0092-8674(02)00659-1. [DOI] [PubMed] [Google Scholar]
- Nakagawa K., Masumoto H., Sorimachi H., Suzuki K. Dissociation of m-calpain subunits occurs after autolysis of the N-terminus of the catalytic subunit, and is not required for activation. J Biochem. 2001 Nov;130(5):605–611. doi: 10.1093/oxfordjournals.jbchem.a003025. [DOI] [PubMed] [Google Scholar]
- Nakajima T., Fukiage C., Azuma M., Ma H., Shearer T. R. Different expression patterns for ubiquitous calpains and Capn3 splice variants in monkey ocular tissues. Biochim Biophys Acta. 2001 May 28;1519(1-2):55–64. doi: 10.1016/s0167-4781(01)00212-3. [DOI] [PubMed] [Google Scholar]
- Ono Y., Shimada H., Sorimachi H., Richard I., Saido T. C., Beckmann J. S., Ishiura S., Suzuki K. Functional defects of a muscle-specific calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A. J Biol Chem. 1998 Jul 3;273(27):17073–17078. doi: 10.1074/jbc.273.27.17073. [DOI] [PubMed] [Google Scholar]
- Pal G. P., Elce J. S., Jia Z. Dissociation and aggregation of calpain in the presence of calcium. J Biol Chem. 2001 Sep 10;276(50):47233–47238. doi: 10.1074/jbc.M105149200. [DOI] [PubMed] [Google Scholar]
- Pontremoli S., Melloni E., Damiani G., Salamino F., Sparatore B., Michetti M., Horecker B. L. Effects of a monoclonal anti-calpain antibody on responses of stimulated human neutrophils. Evidence for a role for proteolytically modified protein kinase C. J Biol Chem. 1988 Feb 5;263(4):1915–1919. [PubMed] [Google Scholar]
- Pontremoli S., Melloni E., Sparatore B., Salamino F., Michetti M., Sacco O., Horecker B. L. Role of phospholipids in the activation of the Ca2+-dependent neutral proteinase of human erythrocytes. Biochem Biophys Res Commun. 1985 Jun 14;129(2):389–395. doi: 10.1016/0006-291x(85)90163-9. [DOI] [PubMed] [Google Scholar]
- Pontremoli S., Melloni E., Viotti P. L., Michetti M., Salamino F., Horecker B. L. Identification of two calpastatin forms in rat skeletal muscle and their susceptibility to digestion by homologous calpains. Arch Biochem Biophys. 1991 Aug 1;288(2):646–652. doi: 10.1016/0003-9861(91)90247-g. [DOI] [PubMed] [Google Scholar]
- Pontremoli S., Sparatore B., Salamino F., Michetti M., Sacco O., Melloni E. Reversible activation of human neutrophil calpain promoted by interaction with plasma membranes. Biochem Int. 1985 Jul;11(1):35–44. [PubMed] [Google Scholar]
- Reverter D., Sorimachi H., Bode W. The structure of calcium-free human m-calpain: implications for calcium activation and function. Trends Cardiovasc Med. 2001 Aug;11(6):222–229. doi: 10.1016/s1050-1738(01)00112-8. [DOI] [PubMed] [Google Scholar]
- Reverter D., Strobl S., Fernandez-Catalan C., Sorimachi H., Suzuki K., Bode W. Structural basis for possible calcium-induced activation mechanisms of calpains. Biol Chem. 2001 May;382(5):753–766. doi: 10.1515/BC.2001.091. [DOI] [PubMed] [Google Scholar]
- Rey Michelle A., Davies Peter L. The protease core of the muscle-specific calpain, p94, undergoes Ca2+-dependent intramolecular autolysis. FEBS Lett. 2002 Dec 18;532(3):401–406. doi: 10.1016/s0014-5793(02)03722-5. [DOI] [PubMed] [Google Scholar]
- Richard I., Broux O., Allamand V., Fougerousse F., Chiannilkulchai N., Bourg N., Brenguier L., Devaud C., Pasturaud P., Roudaut C. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 1995 Apr 7;81(1):27–40. doi: 10.1016/0092-8674(95)90368-2. [DOI] [PubMed] [Google Scholar]
- Salamino F., Averna M., Tedesco I., De Tullio R., Melloni E., Pontremoli S. Modulation of rat brain calpastatin efficiency by post-translational modifications. FEBS Lett. 1997 Aug 4;412(3):433–438. doi: 10.1016/s0014-5793(97)00819-3. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorimachi H., Imajoh-Ohmi S., Emori Y., Kawasaki H., Ohno S., Minami Y., Suzuki K. Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle. J Biol Chem. 1989 Nov 25;264(33):20106–20111. [PubMed] [Google Scholar]
- Sorimachi H., Ishiura S., Suzuki K. A novel tissue-specific calpain species expressed predominantly in the stomach comprises two alternative splicing products with and without Ca(2+)-binding domain. J Biol Chem. 1993 Sep 15;268(26):19476–19482. [PubMed] [Google Scholar]
- Sorimachi H., Ishiura S., Suzuki K. Structure and physiological function of calpains. Biochem J. 1997 Dec 15;328(Pt 3):721–732. doi: 10.1042/bj3280721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strobl S., Fernandez-Catalan C., Braun M., Huber R., Masumoto H., Nakagawa K., Irie A., Sorimachi H., Bourenkow G., Bartunik H. The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):588–592. doi: 10.1073/pnas.97.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki K., Sorimachi H. A novel aspect of calpain activation. FEBS Lett. 1998 Aug 14;433(1-2):1–4. doi: 10.1016/s0014-5793(98)00856-4. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K. K. Calpain and caspase: can you tell the difference? Trends Neurosci. 2000 Jan;23(1):20–26. doi: 10.1016/s0166-2236(99)01479-4. [DOI] [PubMed] [Google Scholar]