Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 1;377(Pt 1):205–213. doi: 10.1042/BJ20031123

Induction of murine NAD(P)H:quinone oxidoreductase by 2,3,7,8-tetrachlorodibenzo-p-dioxin requires the CNC (cap 'n' collar) basic leucine zipper transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2): cross-interaction between AhR (aryl hydrocarbon receptor) and Nrf2 signal transduction.

Qiang Ma 1, Krista Kinneer 1, Yongyi Bi 1, Jefferson Y Chan 1, Yuet Wai Kan 1
PMCID: PMC1223846  PMID: 14510636

Abstract

TCDD (2,3,7,8-tetrachlorodibenzo- p -dixoin) induces phase II drug-metabolizing enzyme NQO1 [NAD(P)H:quinone oxidoreductase; EC 1.6.99.2; DT-diaphorase] in a wide range of mammalian tissues and cells. Here, we analysed the molecular pathway mediating NQO1 induction by TCDD in mouse hepatoma cells. Inhibition of protein synthesis with CHX (cycloheximide) completely blocks induction of NQO1 by TCDD as well as the basal expression and induction by phenolic antioxidant tBHQ (2-t-butylbenzene-1,4-diol), implicating a labile factor in NQO1 mRNA expression. The inhibition is both time- and concentration-dependent, requires inhibition of protein synthesis, and occurs at a transcriptional level. Inhibition of NQO1 transcription by CHX correlates with a rapid reduction of the CNC bZip (cap 'n' collar basic leucine zipper) transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) through the 26 S proteasome pathway. Moreover, blocking Nrf2 degradation with proteasome inhibitor MG132 increases the amount of Nrf2 and superinduces NQO1 in the presence of TCDD or tBHQ. Finally, genetic experiments using AhR (aryl hydrocarbon receptor)-, Arnt (aryl hydrocarbon receptor nuclear translocator)- or Nrf2-deficient cells reveal that, while induction of NQO1 by TCDD depends on the presence of AhR and Arnt, the basal and inducible expression of NQO1 by either TCDD or tBHQ requires functional Nrf2. The findings demonstrate a novel role of Nrf2 in the induction of NQO1 by TCDD and provide new insights into the mechanism by which Nrf2 regulates the induction of phase II enzymes by both phenolic antioxidants and AhR ligands.

Full Text

The Full Text of this article is available as a PDF (284.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam J., Stewart D., Touchard C., Boinapally S., Choi A. M., Cook J. L. Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem. 1999 Sep 10;274(37):26071–26078. doi: 10.1074/jbc.274.37.26071. [DOI] [PubMed] [Google Scholar]
  2. Benson A. M., Hunkeler M. J., Talalay P. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5216–5220. doi: 10.1073/pnas.77.9.5216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chan K., Lu R., Chang J. C., Kan Y. W. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13943–13948. doi: 10.1073/pnas.93.24.13943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chan W. K., Yao G., Gu Y. Z., Bradfield C. A. Cross-talk between the aryl hydrocarbon receptor and hypoxia inducible factor signaling pathways. Demonstration of competition and compensation. J Biol Chem. 1999 Apr 23;274(17):12115–12123. doi: 10.1074/jbc.274.17.12115. [DOI] [PubMed] [Google Scholar]
  5. Chanas Simon A., Jiang Qing, McMahon Michael, McWalter Gail K., McLellan Lesley I., Elcombe Clifford R., Henderson Colin J., Wolf C. Roland, Moffat Graeme J., Itoh Ken. Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem J. 2002 Jul 15;365(Pt 2):405–416. doi: 10.1042/BJ20020320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elferink C. J., Ge N. L., Levine A. Maximal aryl hydrocarbon receptor activity depends on an interaction with the retinoblastoma protein. Mol Pharmacol. 2001 Apr;59(4):664–673. doi: 10.1124/mol.59.4.664. [DOI] [PubMed] [Google Scholar]
  7. Favreau L. V., Pickett C. B. The rat quinone reductase antioxidant response element. Identification of the nucleotide sequence required for basal and inducible activity and detection of antioxidant response element-binding proteins in hepatoma and non-hepatoma cell lines. J Biol Chem. 1995 Oct 13;270(41):24468–24474. doi: 10.1074/jbc.270.41.24468. [DOI] [PubMed] [Google Scholar]
  8. Favreau L. V., Pickett C. B. Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. J Biol Chem. 1991 Mar 5;266(7):4556–4561. [PubMed] [Google Scholar]
  9. Fleming Ronald A., Drees Jeffrey, Loggie Brian W., Russell Gregory B., Geisinger Kim R., Morris Reba T., Sachs Debbie, McQuellon Richard P. Clinical significance of a NAD(P)H: quinone oxidoreductase 1 polymorphism in patients with disseminated peritoneal cancer receiving intraperitoneal hyperthermic chemotherapy with mitomycin C. Pharmacogenetics. 2002 Jan;12(1):31–37. doi: 10.1097/00008571-200201000-00005. [DOI] [PubMed] [Google Scholar]
  10. Hankinson O. The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol. 1995;35:307–340. doi: 10.1146/annurev.pa.35.040195.001515. [DOI] [PubMed] [Google Scholar]
  11. Huang H-C, Nguyen Truyen, Pickett Cecil B. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem. 2002 Aug 26;277(45):42769–42774. doi: 10.1074/jbc.M206911200. [DOI] [PubMed] [Google Scholar]
  12. Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T., Hayashi N., Satoh K., Hatayama I. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997 Jul 18;236(2):313–322. doi: 10.1006/bbrc.1997.6943. [DOI] [PubMed] [Google Scholar]
  13. Itoh K., Wakabayashi N., Katoh Y., Ishii T., Igarashi K., Engel J. D., Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999 Jan 1;13(1):76–86. doi: 10.1101/gad.13.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ke S., Rabson A. B., Germino J. F., Gallo M. A., Tian Y. Mechanism of suppression of cytochrome P-450 1A1 expression by tumor necrosis factor-alpha and lipopolysaccharide. J Biol Chem. 2001 Jul 24;276(43):39638–39644. doi: 10.1074/jbc.M106286200. [DOI] [PubMed] [Google Scholar]
  15. Larson R. A., Wang Y., Banerjee M., Wiemels J., Hartford C., Le Beau M. M., Smith M. T. Prevalence of the inactivating 609C-->T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia. Blood. 1999 Jul 15;94(2):803–807. [PubMed] [Google Scholar]
  16. Long Delwin J., 2nd, Gaikwad Amos, Multani Asha, Pathak Sen, Montgomery Charles A., Gonzalez Frank J., Jaiswal Anil K. Disruption of the NAD(P)H:quinone oxidoreductase 1 (NQO1) gene in mice causes myelogenous hyperplasia. Cancer Res. 2002 Jun 1;62(11):3030–3036. [PubMed] [Google Scholar]
  17. Lusska A., Wu L., Whitlock J. P., Jr Superinduction of CYP1A1 transcription by cycloheximide. Role of the DNA binding site for the liganded Ah receptor. J Biol Chem. 1992 Jul 25;267(21):15146–15151. [PubMed] [Google Scholar]
  18. Ma Q. Induction of CYP1A1. The AhR/DRE paradigm: transcription, receptor regulation, and expanding biological roles. Curr Drug Metab. 2001 Jun;2(2):149–164. doi: 10.2174/1389200013338603. [DOI] [PubMed] [Google Scholar]
  19. Ma Q., Renzelli A. J., Baldwin K. T., Antonini J. M. Superinduction of CYP1A1 gene expression. Regulation of 2,3,7, 8-tetrachlorodibenzo-p-dioxin-induced degradation of Ah receptor by cycloheximide. J Biol Chem. 2000 Apr 28;275(17):12676–12683. doi: 10.1074/jbc.275.17.12676. [DOI] [PubMed] [Google Scholar]
  20. Ma Qiang, Lu Anthony Y. H. Origins of individual variability in P4501A induction. Chem Res Toxicol. 2003 Mar;16(3):249–260. doi: 10.1021/tx0200919. [DOI] [PubMed] [Google Scholar]
  21. Miller A. G., Israel D., Whitlock J. P., Jr Biochemical and genetic analysis of variant mouse hepatoma cells defective in the induction of benzo(a)pyrene-metabolizing enzyme activity. J Biol Chem. 1983 Mar 25;258(6):3523–3527. [PubMed] [Google Scholar]
  22. Moran J. L., Siegel D., Ross D. A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H:quinone oxidoreductase 1 (NQO1) to benzene toxicity. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8150–8155. doi: 10.1073/pnas.96.14.8150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Motohashi Hozumi, O'Connor Tania, Katsuoka Fumiki, Engel James Douglas, Yamamoto Masayuki. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene. 2002 Jul 10;294(1-2):1–12. doi: 10.1016/s0378-1119(02)00788-6. [DOI] [PubMed] [Google Scholar]
  24. Nebert Daniel W., Roe Amy L., Vandale Susan E., Bingham Eula, Oakley Gregory G. NAD(P)H:quinone oxidoreductase (NQO1) polymorphism, exposure to benzene, and predisposition to disease: a HuGE review. Genet Med. 2002 Mar-Apr;4(2):62–70. doi: 10.1097/00125817-200203000-00003. [DOI] [PubMed] [Google Scholar]
  25. Nguyen T., Huang H. C., Pickett C. B. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J Biol Chem. 2000 May 19;275(20):15466–15473. doi: 10.1074/jbc.M000361200. [DOI] [PubMed] [Google Scholar]
  26. Nguyen Truyen, Sherratt Philip J., Huang H-C, Yang Chung S., Pickett Cecil B. Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J Biol Chem. 2002 Nov 22;278(7):4536–4541. doi: 10.1074/jbc.M207293200. [DOI] [PubMed] [Google Scholar]
  27. Nguyen Truyen, Sherratt Philip J., Pickett Cecil B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2002 Jan 10;43:233–260. doi: 10.1146/annurev.pharmtox.43.100901.140229. [DOI] [PubMed] [Google Scholar]
  28. Noda Shuhei, Harada Nobuhiko, Hida Azumi, Fujii-Kuriyama Yoshiaki, Motohashi Hozumi, Yamamoto Masayuki. Gene expression of detoxifying enzymes in AhR and Nrf2 compound null mutant mouse. Biochem Biophys Res Commun. 2003 Mar 28;303(1):105–111. doi: 10.1016/s0006-291x(03)00306-1. [DOI] [PubMed] [Google Scholar]
  29. Poland A., Knutson J. C. 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol. 1982;22:517–554. doi: 10.1146/annurev.pa.22.040182.002505. [DOI] [PubMed] [Google Scholar]
  30. Prestera T., Holtzclaw W. D., Zhang Y., Talalay P. Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2965–2969. doi: 10.1073/pnas.90.7.2965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Radjendirane V., Jaiswal A. K. Antioxidant response element-mediated 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induction of human NAD(P)H:quinone oxidoreductase 1 gene expression. Biochem Pharmacol. 1999 Nov 15;58(10):1649–1655. doi: 10.1016/s0006-2952(99)00245-2. [DOI] [PubMed] [Google Scholar]
  32. Ramos-Gomez M., Kwak M. K., Dolan P. M., Itoh K., Yamamoto M., Talalay P., Kensler T. W. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3410–3415. doi: 10.1073/pnas.051618798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sekhar Konjet R., Yan Xue Xian, Freeman Michael L. Nrf2 degradation by the ubiquitin proteasome pathway is inhibited by KIAA0132, the human homolog to INrf2. Oncogene. 2002 Oct 3;21(44):6829–6834. doi: 10.1038/sj.onc.1205905. [DOI] [PubMed] [Google Scholar]
  34. Senft Albert P., Dalton Timothy P., Nebert Daniel W., Genter Mary Beth, Hutchinson Richard J., Shertzer Howard G. Dioxin increases reactive oxygen production in mouse liver mitochondria. Toxicol Appl Pharmacol. 2002 Jan 1;178(1):15–21. doi: 10.1006/taap.2001.9314. [DOI] [PubMed] [Google Scholar]
  35. Smith M. T., Wang Y., Kane E., Rollinson S., Wiemels J. L., Roman E., Roddam P., Cartwright R., Morgan G. Low NAD(P)H:quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults. Blood. 2001 Mar 1;97(5):1422–1426. doi: 10.1182/blood.v97.5.1422. [DOI] [PubMed] [Google Scholar]
  36. Stewart Daniel, Killeen Erin, Naquin Ryan, Alam Safdar, Alam Jawed. Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem. 2002 Nov 18;278(4):2396–2402. doi: 10.1074/jbc.M209195200. [DOI] [PubMed] [Google Scholar]
  37. Talalay P., De Long M. J., Prochaska H. J. Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8261–8265. doi: 10.1073/pnas.85.21.8261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vasiliou V., Reuter S. F., Williams S., Puga A., Nebert D. W. Mouse cytosolic class 3 aldehyde dehydrogenase (Aldh3a1): gene structure and regulation of constitutive and dioxin-inducible expression. Pharmacogenetics. 1999 Oct;9(5):569–580. [PubMed] [Google Scholar]
  39. Venugopal R., Jaiswal A. K. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14960–14965. doi: 10.1073/pnas.93.25.14960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wattenberg L. W., Coccia J. B., Lam L. K. Inhibitory effects of phenolic compounds on benzo(a)pyrene-induced neoplasia. Cancer Res. 1980 Aug;40(8 Pt 1):2820–2823. [PubMed] [Google Scholar]
  41. Whitlock J. P., Jr Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol. 1999;39:103–125. doi: 10.1146/annurev.pharmtox.39.1.103. [DOI] [PubMed] [Google Scholar]
  42. Wiemels J. L., Pagnamenta A., Taylor G. M., Eden O. B., Alexander F. E., Greaves M. F. A lack of a functional NAD(P)H:quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators. Cancer Res. 1999 Aug 15;59(16):4095–4099. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES