Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 15;377(Pt 2):339–346. doi: 10.1042/BJ20031207

Rosiglitazone, an agonist of peroxisome-proliferator-activated receptor gamma (PPARgamma), decreases inhibitory serine phosphorylation of IRS1 in vitro and in vivo.

Guoqiang Jiang 1, Qing Dallas-Yang 1, Subarna Biswas 1, Zhihua Li 1, Bei B Zhang 1
PMCID: PMC1223877  PMID: 14556646

Abstract

Peroxisome-proliferator-activated receptor gamma agonists such as rosiglitazone, a thiazolidinedione, improve insulin sensitivity in vivo, but the underlying mechanism(s) remains unclear. Phosphorylation of IRS1 (insulin receptor substrate protein 1) on certain serine residues, including S307 and S612 in rodent IRS1 (equivalent to S312 and S616 in human IRS1), has been shown to play a negative role in insulin signalling. In the present study, we investigated whether rosiglitazone improves insulin sensitivity by decreasing IRS1 inhibitory serine phosphorylation. In HEK-293 (human embryonic kidney 293) cells stably expressing recombinant IRS1 and in 3T3L1 adipocytes, rosiglitazone attenuated PMA-induced IRS1 S307/S612 phosphorylation and decreased insulin-stimulated Akt phosphorylation. We observed increased IRS1 S307 phosphorylation and concomitant decrease in insulin signalling as measured by insulin-stimulated IRS1 tyrosine phosphorylation, and Akt threonine phosphorylation in adipose tissues of Zucker obese rats compared with lean control rats. Treatment with rosiglitazone at 30 mg/kg body weight for 24 and 48 h increased insulin signalling and decreased IRS1 S307 phosphorylation concomitantly. Whereas the 48 h treatment reversed hyper-phosphorylation (and activation) of both c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, the 24 h treatments only decreased hyper-phosphorylation of p38 mitogen-activated protein kinase. The treatment of the Zucker obese rats with rosiglitazone also reversed the high circulating levels of non-esterified fatty acids, which have been shown to be correlated with increased IRS1 serine phosphorylation in other animal models. Taken together, these results suggest that IRS1 inhibitory serine phosphorylation is a key component of insulin resistance and its reversal contributes to the insulin sensitizing effects by rosiglitazone.

Full Text

The Full Text of this article is available as a PDF (230.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguirre V., Uchida T., Yenush L., Davis R., White M. F. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000 Mar 24;275(12):9047–9054. doi: 10.1074/jbc.275.12.9047. [DOI] [PubMed] [Google Scholar]
  2. Aguirre Vincent, Werner Eric D., Giraud Jodel, Lee Yong Hee, Shoelson Steve E., White Morris F. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2001 Oct 17;277(2):1531–1537. doi: 10.1074/jbc.M101521200. [DOI] [PubMed] [Google Scholar]
  3. Berger J., Leibowitz M. D., Doebber T. W., Elbrecht A., Zhang B., Zhou G., Biswas C., Cullinan C. A., Hayes N. S., Li Y. Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J Biol Chem. 1999 Mar 5;274(10):6718–6725. doi: 10.1074/jbc.274.10.6718. [DOI] [PubMed] [Google Scholar]
  4. Berger Joel, Moller David E. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409–435. doi: 10.1146/annurev.med.53.082901.104018. [DOI] [PubMed] [Google Scholar]
  5. Bollag G. E., Roth R. A., Beaudoin J., Mochly-Rosen D., Koshland D. E., Jr Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5822–5824. doi: 10.1073/pnas.83.16.5822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carlson Christian J., Koterski Sandra, Sciotti Richard J., Poccard German Braillard, Rondinone Cristina M. Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes: potential role of p38 in the downregulation of GLUT4 expression. Diabetes. 2003 Mar;52(3):634–641. doi: 10.2337/diabetes.52.3.634. [DOI] [PubMed] [Google Scholar]
  7. Cusi K., Maezono K., Osman A., Pendergrass M., Patti M. E., Pratipanawatr T., DeFronzo R. A., Kahn C. R., Mandarino L. J. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest. 2000 Feb;105(3):311–320. doi: 10.1172/JCI7535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Czech M. P., Corvera S. Signaling mechanisms that regulate glucose transport. J Biol Chem. 1999 Jan 22;274(4):1865–1868. doi: 10.1074/jbc.274.4.1865. [DOI] [PubMed] [Google Scholar]
  9. De Fea K., Roth R. A. Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry. 1997 Oct 21;36(42):12939–12947. doi: 10.1021/bi971157f. [DOI] [PubMed] [Google Scholar]
  10. Delahaye L., Mothe-Satney I., Myers M. G., White M. F., Van Obberghen E. Interaction of insulin receptor substrate-1 (IRS-1) with phosphatidylinositol 3-kinase: effect of substitution of serine for alanine in potential IRS-1 serine phosphorylation sites. Endocrinology. 1998 Dec;139(12):4911–4919. doi: 10.1210/endo.139.12.6379. [DOI] [PubMed] [Google Scholar]
  11. Griffin M. E., Marcucci M. J., Cline G. W., Bell K., Barucci N., Lee D., Goodyear L. J., Kraegen E. W., White M. F., Shulman G. I. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes. 1999 Jun;48(6):1270–1274. doi: 10.2337/diabetes.48.6.1270. [DOI] [PubMed] [Google Scholar]
  12. Hayakawa T., Shiraki T., Morimoto T., Shii K., Ikeda H. Pioglitazone improves insulin signaling defects in skeletal muscle from Wistar fatty (fa/fa) rats. Biochem Biophys Res Commun. 1996 Jun 14;223(2):439–444. doi: 10.1006/bbrc.1996.0912. [DOI] [PubMed] [Google Scholar]
  13. Hevener A. L., Reichart D., Olefsky J. Exercise and thiazolidinedione therapy normalize insulin action in the obese Zucker fatty rat. Diabetes. 2000 Dec;49(12):2154–2159. doi: 10.2337/diabetes.49.12.2154. [DOI] [PubMed] [Google Scholar]
  14. Hirosumi Jiro, Tuncman Gürol, Chang Lufen, Görgün Cem Z., Uysal K. Teoman, Maeda Kazuhisa, Karin Michael, Hotamisligil Gökhan S. A central role for JNK in obesity and insulin resistance. Nature. 2002 Nov 21;420(6913):333–336. doi: 10.1038/nature01137. [DOI] [PubMed] [Google Scholar]
  15. Hundal Ripudaman S., Petersen Kitt F., Mayerson Adam B., Randhawa Pritpal S., Inzucchi Silvio, Shoelson Steven E., Shulman Gerald I. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest. 2002 May;109(10):1321–1326. doi: 10.1172/JCI14955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jiang Guoqiang, Dallas-Yang Qing, Li Zhihua, Szalkowski Deborah, Liu Franklin, Shen Xiaolan, Wu Margaret, Zhou Gaochao, Doebber Thomas, Berger Joel. Potentiation of insulin signaling in tissues of Zucker obese rats after acute and long-term treatment with PPARgamma agonists. Diabetes. 2002 Aug;51(8):2412–2419. doi: 10.2337/diabetes.51.8.2412. [DOI] [PubMed] [Google Scholar]
  17. Jiang Guoqiang, Dallas-Yang Qing, Liu Franklin, Moller David E., Zhang Bei B. Salicylic acid reverses phorbol 12-myristate-13-acetate (PMA)- and tumor necrosis factor alpha (TNFalpha)-induced insulin receptor substrate 1 (IRS1) serine 307 phosphorylation and insulin resistance in human embryonic kidney 293 (HEK293) cells. J Biol Chem. 2002 Oct 29;278(1):180–186. doi: 10.1074/jbc.M205565200. [DOI] [PubMed] [Google Scholar]
  18. Jiang Guoqiang, Zhang Bei B. Pi 3-kinase and its up- and down-stream modulators as potential targets for the treatment of type II diabetes. Front Biosci. 2002 Apr 1;7:d903–d907. doi: 10.2741/A820. [DOI] [PubMed] [Google Scholar]
  19. Kanety H., Feinstein R., Papa M. Z., Hemi R., Karasik A. Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem. 1995 Oct 6;270(40):23780–23784. doi: 10.1074/jbc.270.40.23780. [DOI] [PubMed] [Google Scholar]
  20. Khandoudi Nassirah, Delerive Philippe, Berrebi-Bertrand Isabelle, Buckingham Robin E., Staels Bart, Bril Antoine. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma, inhibits the Jun NH(2)-terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury. Diabetes. 2002 May;51(5):1507–1514. doi: 10.2337/diabetes.51.5.1507. [DOI] [PubMed] [Google Scholar]
  21. Kido Y., Burks D. J., Withers D., Bruning J. C., Kahn C. R., White M. F., Accili D. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest. 2000 Jan;105(2):199–205. doi: 10.1172/JCI7917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kim J. K., Kim Y. J., Fillmore J. J., Chen Y., Moore I., Lee J., Yuan M., Li Z. W., Karin M., Perret P. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest. 2001 Aug;108(3):437–446. doi: 10.1172/JCI11559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kim Y. B., Peroni O. D., Franke T. F., Kahn B. B. Divergent regulation of Akt1 and Akt2 isoforms in insulin target tissues of obese Zucker rats. Diabetes. 2000 May;49(5):847–856. doi: 10.2337/diabetes.49.5.847. [DOI] [PubMed] [Google Scholar]
  24. Kim Young-Bum, Shulman Gerald I., Kahn Barbara B. Fatty acid infusion selectively impairs insulin action on Akt1 and protein kinase C lambda /zeta but not on glycogen synthase kinase-3. J Biol Chem. 2002 Jul 2;277(36):32915–32922. doi: 10.1074/jbc.M204710200. [DOI] [PubMed] [Google Scholar]
  25. Meyer Marco M., Levin Klaus, Grimmsmann Thomas, Perwitz Nina, Eirich Alexandra, Beck-Nielsen Henning, Klein Harald H. Troglitazone treatment increases protein kinase B phosphorylation in skeletal muscle of normoglycemic subjects at risk for the development of type 2 diabetes. Diabetes. 2002 Sep;51(9):2691–2697. doi: 10.2337/diabetes.51.9.2691. [DOI] [PubMed] [Google Scholar]
  26. Mothe I., Van Obberghen E. Phosphorylation of insulin receptor substrate-1 on multiple serine residues, 612, 632, 662, and 731, modulates insulin action. J Biol Chem. 1996 May 10;271(19):11222–11227. doi: 10.1074/jbc.271.19.11222. [DOI] [PubMed] [Google Scholar]
  27. Nawano M., Ueta K., Oku A., Arakawa K., Saito A., Funaki M., Anai M., Kikuchi M., Oka Y., Asano T. Hyperglycemia impairs the insulin signaling step between PI 3-kinase and Akt/PKB activations in ZDF rat liver. Biochem Biophys Res Commun. 1999 Dec 9;266(1):252–256. doi: 10.1006/bbrc.1999.1797. [DOI] [PubMed] [Google Scholar]
  28. Olefsky J. M. Treatment of insulin resistance with peroxisome proliferator-activated receptor gamma agonists. J Clin Invest. 2000 Aug;106(4):467–472. doi: 10.1172/JCI10843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Paz K., Hemi R., LeRoith D., Karasik A., Elhanany E., Kanety H., Zick Y. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997 Nov 21;272(47):29911–29918. doi: 10.1074/jbc.272.47.29911. [DOI] [PubMed] [Google Scholar]
  30. Ravichandran L. V., Esposito D. L., Chen J., Quon M. J. Protein kinase C-zeta phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. J Biol Chem. 2000 Nov 3;276(5):3543–3549. doi: 10.1074/jbc.M007231200. [DOI] [PubMed] [Google Scholar]
  31. Ribon V., Johnson J. H., Camp H. S., Saltiel A. R. Thiazolidinediones and insulin resistance: peroxisome proliferatoractivated receptor gamma activation stimulates expression of the CAP gene. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14751–14756. doi: 10.1073/pnas.95.25.14751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rieusset J., Auwerx J., Vidal H. Regulation of gene expression by activation of the peroxisome proliferator-activated receptor gamma with rosiglitazone (BRL 49653) in human adipocytes. Biochem Biophys Res Commun. 1999 Nov;265(1):265–271. doi: 10.1006/bbrc.1999.1657. [DOI] [PubMed] [Google Scholar]
  33. Rui L., Aguirre V., Kim J. K., Shulman G. I., Lee A., Corbould A., Dunaif A., White M. F. Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest. 2001 Jan;107(2):181–189. doi: 10.1172/JCI10934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Saltiel A. R., Olefsky J. M. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes. 1996 Dec;45(12):1661–1669. doi: 10.2337/diab.45.12.1661. [DOI] [PubMed] [Google Scholar]
  35. Shepherd P. R., Withers D. J., Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J. 1998 Aug 1;333(Pt 3):471–490. doi: 10.1042/bj3330471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shulman G. I. Cellular mechanisms of insulin resistance. J Clin Invest. 2000 Jul;106(2):171–176. doi: 10.1172/JCI10583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Smith U., Gogg S., Johansson A., Olausson T., Rotter V., Svalstedt B. Thiazolidinediones (PPARgamma agonists) but not PPARalpha agonists increase IRS-2 gene expression in 3T3-L1 and human adipocytes. FASEB J. 2001 Jan;15(1):215–220. doi: 10.1096/fj.00-0020com. [DOI] [PubMed] [Google Scholar]
  38. Standaert Mary L., Kanoh Yoshinori, Sajan Mini P., Bandyopadhyay Gautam, Farese Robert V. Cbl, IRS-1, and IRS-2 mediate effects of rosiglitazone on PI3K, PKC-lambda, and glucose transport in 3T3/L1 adipocytes. Endocrinology. 2002 May;143(5):1705–1716. doi: 10.1210/endo.143.5.8812. [DOI] [PubMed] [Google Scholar]
  39. Strack V., Hennige A. M., Krützfeldt J., Bossenmaier B., Klein H. H., Kellerer M., Lammers R., Häring H. U. Serine residues 994 and 1023/25 are important for insulin receptor kinase inhibition by protein kinase C isoforms beta2 and theta. Diabetologia. 2000 Apr;43(4):443–449. doi: 10.1007/s001250051327. [DOI] [PubMed] [Google Scholar]
  40. Takano A., Usui I., Haruta T., Kawahara J., Uno T., Iwata M., Kobayashi M. Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol. 2001 Aug;21(15):5050–5062. doi: 10.1128/MCB.21.15.5050-5062.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Takayama S., White M. F., Kahn C. R. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity. J Biol Chem. 1988 Mar 5;263(7):3440–3447. [PubMed] [Google Scholar]
  42. Tanti J. F., Grémeaux T., van Obberghen E., Le Marchand-Brustel Y. Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J Biol Chem. 1994 Feb 25;269(8):6051–6057. [PubMed] [Google Scholar]
  43. Terruzzi Ileana, Allibardi Sonia, Bendinelli Paola, Maroni Paola, Piccoletti Roberta, Vesco Flavio, Samaja Michele, Luzi Livio. Amino acid- and lipid-induced insulin resistance in rat heart: molecular mechanisms. Mol Cell Endocrinol. 2002 Apr 25;190(1-2):135–145. doi: 10.1016/s0303-7207(02)00005-9. [DOI] [PubMed] [Google Scholar]
  44. Tremblay F., Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem. 2001 Aug 9;276(41):38052–38060. doi: 10.1074/jbc.M106703200. [DOI] [PubMed] [Google Scholar]
  45. White Morris F. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002 Sep;283(3):E413–E422. doi: 10.1152/ajpendo.00514.2001. [DOI] [PubMed] [Google Scholar]
  46. Whiteman Eileen L., Cho Han, Birnbaum Morris J. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab. 2002 Dec;13(10):444–451. doi: 10.1016/s1043-2760(02)00662-8. [DOI] [PubMed] [Google Scholar]
  47. Yu Chunli, Chen Yan, Cline Gary W., Zhang Dongyan, Zong Haihong, Wang Yanlin, Bergeron Raynald, Kim Jason K., Cushman Samuel W., Cooney Gregory J. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002 Nov 14;277(52):50230–50236. doi: 10.1074/jbc.M200958200. [DOI] [PubMed] [Google Scholar]
  48. Yuan M., Konstantopoulos N., Lee J., Hansen L., Li Z. W., Karin M., Shoelson S. E. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001 Aug 31;293(5535):1673–1677. doi: 10.1126/science.1061620. [DOI] [PubMed] [Google Scholar]
  49. Zhang B., Berger J., Hu E., Szalkowski D., White-Carrington S., Spiegelman B. M., Moller D. E. Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol. 1996 Nov;10(11):1457–1466. doi: 10.1210/mend.10.11.8923470. [DOI] [PubMed] [Google Scholar]
  50. Zhang B., Szalkowski D., Diaz E., Hayes N., Smith R., Berger J. Potentiation of insulin stimulation of phosphatidylinositol 3-kinase by thiazolidinedione-derived antidiabetic agents in Chinese hamster ovary cells expressing human insulin receptors and L6 myotubes. J Biol Chem. 1994 Oct 14;269(41):25735–25741. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES