Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 1;377(Pt 3):741–747. doi: 10.1042/BJ20030307

Human scavenger receptor class B type II (SR-BII) and cellular cholesterol efflux.

Jane V Mulcahy 1, Dave R Riddell 1, James S Owen 1
PMCID: PMC1223905  PMID: 14570588

Abstract

Although studies in recombinant cells indicate that scavenger receptor class B, type I (SR-BI) can promote cholesterol efflux, investigations in transgenic mice overexpressing or deficient in SR-BI endorse its physiological function as selectively sequestering cholesteryl esters from high-density lipoproteins (HDLs). Less clear is the role of SR-BII, a splice variant of the SR-B gene that differs only in the C-terminal cytoplasmic domain. Here, we identify several putative signalling motifs in the C-terminus of human SR-BII, which are absent from SR-BI, and hypothesize that these motifs interact with signalling molecules to mobilize stored cholesteryl esters and/or promote the efflux of intracellular free cholesterol. 'Pull-down' assays using a panel of tagged SH3 (Src homology 3) domains showed that cytoplasmic SR-BII, but not cytoplasmic SR-BI, bound the SH3 domain of phospholipase C-gamma1; this interaction was not, however, detected under more physiological conditions. Specific anti-peptide antisera identified SR-BII in human monocyte/macrophage THP-1 cells and, in recombinant cells, revealed receptor localization to caveolae, a plasma membrane microdomain that concentrates signal-transducer molecules and acts as a conduit for cholesterol flux between cells and lipoproteins. Consistent with its caveolar localization, expression of human SR-BII in recombinant Chinese hamster ovary cells (CHO-SR-BII) was associated with increased HDL-mediated cholesterol efflux. Nevertheless, when CHO-SR-BII cells were pre-loaded with cholesteryl [(3)H]oleate and incubated with HDL, cholesteryl ester stores were not reduced compared with control cells. We conclude that although human SR-BII is expressed by macrophages, contains cytoplasmic signalling motifs and localizes to caveolae, its ability to stimulate cholesterol efflux does not reflect enhanced hydrolysis of stored cholesteryl esters.

Full Text

The Full Text of this article is available as a PDF (197.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acton S., Rigotti A., Landschulz K. T., Xu S., Hobbs H. H., Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996 Jan 26;271(5248):518–520. doi: 10.1126/science.271.5248.518. [DOI] [PubMed] [Google Scholar]
  2. Babitt J., Trigatti B., Rigotti A., Smart E. J., Anderson R. G., Xu S., Krieger M. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J Biol Chem. 1997 May 16;272(20):13242–13249. doi: 10.1074/jbc.272.20.13242. [DOI] [PubMed] [Google Scholar]
  3. Boucher Philippe, Liu Pingsheng, Gotthardt Michael, Hiesberger Thomas, Anderson Richard G. W., Herz Joachim. Platelet-derived growth factor mediates tyrosine phosphorylation of the cytoplasmic domain of the low Density lipoprotein receptor-related protein in caveolae. J Biol Chem. 2002 Feb 19;277(18):15507–15513. doi: 10.1074/jbc.M200428200. [DOI] [PubMed] [Google Scholar]
  4. Deeg M. A., Bowen R. F., Oram J. F., Bierman E. L. High density lipoproteins stimulate mitogen-activated protein kinases in human skin fibroblasts. Arterioscler Thromb Vasc Biol. 1997 Sep;17(9):1667–1674. doi: 10.1161/01.atv.17.9.1667. [DOI] [PubMed] [Google Scholar]
  5. Ellsworth J. L., Erickson S. K., Cooper A. D. Very low and low density lipoprotein synthesis and secretion by the human hepatoma cell line Hep-G2: effects of free fatty acid. J Lipid Res. 1986 Aug;27(8):858–874. [PubMed] [Google Scholar]
  6. Fielding C. J. Caveolae and signaling. Curr Opin Lipidol. 2001 Jun;12(3):281–287. doi: 10.1097/00041433-200106000-00007. [DOI] [PubMed] [Google Scholar]
  7. Fielding C. J., Fielding P. E. Cholesterol and caveolae: structural and functional relationships. Biochim Biophys Acta. 2000 Dec 15;1529(1-3):210–222. doi: 10.1016/s1388-1981(00)00150-5. [DOI] [PubMed] [Google Scholar]
  8. Finan P., Shimizu Y., Gout I., Hsuan J., Truong O., Butcher C., Bennett P., Waterfield M. D., Kellie S. An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J Biol Chem. 1994 May 13;269(19):13752–13755. [PubMed] [Google Scholar]
  9. Gillett M. P., Owen J. S. Comparison of the cytolytic effects in vitro on Trypanosoma brucei brucei of plasma, high density lipoproteins, and apolipoprotein A-I from hosts both susceptible (cattle and sheep) and resistant (human and baboon) to infection. J Lipid Res. 1992 Apr;33(4):513–523. [PubMed] [Google Scholar]
  10. Graf G. A., Connell P. M., van der Westhuyzen D. R., Smart E. J. The class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into caveolae. J Biol Chem. 1999 Apr 23;274(17):12043–12048. doi: 10.1074/jbc.274.17.12043. [DOI] [PubMed] [Google Scholar]
  11. Graf G. A., Matveev S. V., Smart E. J. Class B scavenger receptors, caveolae and cholesterol homeostasis. Trends Cardiovasc Med. 1999 Nov;9(8):221–225. doi: 10.1016/s1050-1738(00)00031-1. [DOI] [PubMed] [Google Scholar]
  12. Graf G. A., Roswell K. L., Smart E. J. 17beta-Estradiol promotes the up-regulation of SR-BII in HepG2 cells and in rat livers. J Lipid Res. 2001 Sep;42(9):1444–1449. [PubMed] [Google Scholar]
  13. Graham A., Vinogradov D. V., Owen J. S. Effects of peroxynitrite on plasma components of the reverse cholesterol transport pathway. FEBS Lett. 1998 Jul 24;431(3):327–332. doi: 10.1016/s0014-5793(98)00785-6. [DOI] [PubMed] [Google Scholar]
  14. Herz Joachim, Bock Hans H. Lipoprotein receptors in the nervous system. Annu Rev Biochem. 2001 Nov 9;71:405–434. doi: 10.1146/annurev.biochem.71.110601.135342. [DOI] [PubMed] [Google Scholar]
  15. Ikemoto M., Arai H., Feng D., Tanaka K., Aoki J., Dohmae N., Takio K., Adachi H., Tsujimoto M., Inoue K. Identification of a PDZ-domain-containing protein that interacts with the scavenger receptor class B type I. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6538–6543. doi: 10.1073/pnas.100114397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ji Y., Jian B., Wang N., Sun Y., Moya M. L., Phillips M. C., Rothblat G. H., Swaney J. B., Tall A. R. Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem. 1997 Aug 22;272(34):20982–20985. doi: 10.1074/jbc.272.34.20982. [DOI] [PubMed] [Google Scholar]
  17. Kamat A., Carpenter G. Phospholipase C-gamma1: regulation of enzyme function and role in growth factor-dependent signal transduction. Cytokine Growth Factor Rev. 1997 Jun;8(2):109–117. doi: 10.1016/s1359-6101(97)00003-8. [DOI] [PubMed] [Google Scholar]
  18. Kirchhausen T. Clathrin. Annu Rev Biochem. 2000;69:699–727. doi: 10.1146/annurev.biochem.69.1.699. [DOI] [PubMed] [Google Scholar]
  19. Kozarsky K. F., Donahee M. H., Rigotti A., Iqbal S. N., Edelman E. R., Krieger M. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature. 1997 May 22;387(6631):414–417. doi: 10.1038/387414a0. [DOI] [PubMed] [Google Scholar]
  20. Li Q., Tsujita M., Yokoyama S. Selective down-regulation by protein kinase C inhibitors of apolipoprotein-mediated cellular cholesterol efflux in macrophages. Biochemistry. 1997 Oct 7;36(40):12045–12052. doi: 10.1021/bi970079t. [DOI] [PubMed] [Google Scholar]
  21. Matveev S., van der Westhuyzen D. R., Smart E. J. Co-expression of scavenger receptor-BI and caveolin-1 is associated with enhanced selective cholesteryl ester uptake in THP-1 macrophages. J Lipid Res. 1999 Sep;40(9):1647–1654. [PubMed] [Google Scholar]
  22. Mendez A. J., Oram J. F., Bierman E. L. Protein kinase C as a mediator of high density lipoprotein receptor-dependent efflux of intracellular cholesterol. J Biol Chem. 1991 Jun 5;266(16):10104–10111. [PubMed] [Google Scholar]
  23. Mineo Chieko, Yuhanna Ivan S., Quon Michael J., Shaul Philip W. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem. 2003 Jan 2;278(11):9142–9149. doi: 10.1074/jbc.M211394200. [DOI] [PubMed] [Google Scholar]
  24. Neufeld E. B., Remaley A. T., Demosky S. J., Stonik J. A., Cooney A. M., Comly M., Dwyer N. K., Zhang M., Blanchette-Mackie J., Santamarina-Fojo S. Cellular localization and trafficking of the human ABCA1 transporter. J Biol Chem. 2001 May 10;276(29):27584–27590. doi: 10.1074/jbc.M103264200. [DOI] [PubMed] [Google Scholar]
  25. Noh D. Y., Shin S. H., Rhee S. G. Phosphoinositide-specific phospholipase C and mitogenic signaling. Biochim Biophys Acta. 1995 Dec 18;1242(2):99–113. doi: 10.1016/0304-419x(95)00006-0. [DOI] [PubMed] [Google Scholar]
  26. Owen J. S., Goodall H., Mistry P., Harry D. S., Day R. C., McIntyre N. Abnormal high density lipoproteins from patients with liver disease regulate cholesterol metabolism in cultured human skin fibroblasts. J Lipid Res. 1984 Sep;25(9):919–931. [PubMed] [Google Scholar]
  27. Owen James S., Mulcahy Jane V. ATP-binding cassette A1 protein and HDL homeostasis. Atheroscler Suppl. 2002 Dec;3(4):13–22. doi: 10.1016/s1567-5688(02)00043-0. [DOI] [PubMed] [Google Scholar]
  28. Pawson T., Gish G. D., Nash P. SH2 domains, interaction modules and cellular wiring. Trends Cell Biol. 2001 Dec;11(12):504–511. doi: 10.1016/s0962-8924(01)02154-7. [DOI] [PubMed] [Google Scholar]
  29. Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
  30. Riddell D. R., Sun X. M., Stannard A. K., Soutar A. K., Owen J. S. Localization of apolipoprotein E receptor 2 to caveolae in the plasma membrane. J Lipid Res. 2001 Jun;42(6):998–1002. [PubMed] [Google Scholar]
  31. Riddell D. R., Vinogradov D. V., Stannard A. K., Chadwick N., Owen J. S. Identification and characterization of LRP8 (apoER2) in human blood platelets. J Lipid Res. 1999 Oct;40(10):1925–1930. [PubMed] [Google Scholar]
  32. Sacre Sandra M., Stannard Anita K., Owen James S. Apolipoprotein E (apoE) isoforms differentially induce nitric oxide production in endothelial cells. FEBS Lett. 2003 Apr 10;540(1-3):181–187. doi: 10.1016/s0014-5793(03)00261-8. [DOI] [PubMed] [Google Scholar]
  33. Shaul P. W., Smart E. J., Robinson L. J., German Z., Yuhanna I. S., Ying Y., Anderson R. G., Michel T. Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem. 1996 Mar 15;271(11):6518–6522. doi: 10.1074/jbc.271.11.6518. [DOI] [PubMed] [Google Scholar]
  34. Songyang Z., Cantley L. C. Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem Sci. 1995 Nov;20(11):470–475. doi: 10.1016/s0968-0004(00)89103-3. [DOI] [PubMed] [Google Scholar]
  35. Stannard A. K., Riddell D. R., Sacre S. M., Tagalakis A. D., Langer C., von Eckardstein A., Cullen P., Athanasopoulos T., Dickson G., Owen J. S. Cell-derived apolipoprotein E (ApoE) particles inhibit vascular cell adhesion molecule-1 (VCAM-1) expression in human endothelial cells. J Biol Chem. 2001 Oct 5;276(49):46011–46016. doi: 10.1074/jbc.M104812200. [DOI] [PubMed] [Google Scholar]
  36. Temel R. E., Trigatti B., DeMattos R. B., Azhar S., Krieger M., Williams D. L. Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13600–13605. doi: 10.1073/pnas.94.25.13600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Trigatti B., Rigotti A., Krieger M. The role of the high-density lipoprotein receptor SR-BI in cholesterol metabolism. Curr Opin Lipidol. 2000 Apr;11(2):123–131. doi: 10.1097/00041433-200004000-00004. [DOI] [PubMed] [Google Scholar]
  38. Waugh M. G., Lawson D., Tan S. K., Hsuan J. J. Phosphatidylinositol 4-phosphate synthesis in immunoisolated caveolae-like vesicles and low buoyant density non-caveolar membranes. J Biol Chem. 1998 Jul 3;273(27):17115–17121. doi: 10.1074/jbc.273.27.17115. [DOI] [PubMed] [Google Scholar]
  39. Webb N. R., Connell P. M., Graf G. A., Smart E. J., de Villiers W. J., de Beer F. C., van der Westhuyzen D. R. SR-BII, an isoform of the scavenger receptor BI containing an alternate cytoplasmic tail, mediates lipid transfer between high density lipoprotein and cells. J Biol Chem. 1998 Jun 12;273(24):15241–15248. doi: 10.1074/jbc.273.24.15241. [DOI] [PubMed] [Google Scholar]
  40. Webb N. R., de Villiers W. J., Connell P. M., de Beer F. C., van der Westhuyzen D. R. Alternative forms of the scavenger receptor BI (SR-BI). J Lipid Res. 1997 Jul;38(7):1490–1495. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES