Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 15;378(Pt 1):185–191. doi: 10.1042/BJ20031213

Latrophilin is required for toxicity of black widow spider venom in Caenorhabditis elegans.

Christopher J Mee 1, Simon R Tomlinson 1, Pavel V Perestenko 1, David De Pomerai 1, Ian R Duce 1, Peter N R Usherwood 1, David R Bell 1
PMCID: PMC1223931  PMID: 14594448

Abstract

Black widow spider venom (BWSV) kills Caenorhabditis elegans after injection owing to the presence of heat- and detergent-sensitive components, which are high-molecular-mass latrotoxins. A C. elegans homologue of latrophilin/CIRL (calcium-independent receptor for latrotoxin), B0457.1, was identified and shown to have five conserved domains. RNAi (RNA interference) of this gene rendered C. elegans resistant to BWSV, whereas RNAi for CYP37A1 or a neurexin I homologue, and a deletion mutant of the related B0286.2 gene, had no effect on BWSV toxicity. The latrophilin RNAi mutants exhibit changes in defaecation cycle and alterations in drug sensitivity. These results demonstrate that latrophilin mediates the toxicity of BWSV and provide evidence for a physiological function of this receptor.

Full Text

The Full Text of this article is available as a PDF (280.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashton A. C., Rahman M. A., Volynski K. E., Manser C., Orlova E. V., Matsushita H., Davletov B. A., van Heel M., Grishin E. V., Ushkaryov Y. A. Tetramerisation of alpha-latrotoxin by divalent cations is responsible for toxin-induced non-vesicular release and contributes to the Ca(2+)-dependent vesicular exocytosis from synaptosomes. Biochimie. 2000 May;82(5):453–468. doi: 10.1016/s0300-9084(00)00199-1. [DOI] [PubMed] [Google Scholar]
  2. Baylis H. A., Matsuda K., Squire M. D., Fleming J. T., Harvey R. J., Darlison M. G., Barnard E. A., Sattelle D. B. ACR-3, a Caenorhabditis elegans nicotinic acetylcholine receptor subunit. Molecular cloning and functional expression. Receptors Channels. 1997;5(3-4):149–158. [PubMed] [Google Scholar]
  3. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cull-Candy S. G., Neal H., Usherwood P. N. Action of black widow spider venom on an aminergic synapse. Nature. 1973 Feb 2;241(5388):353–354. doi: 10.1038/241353a0. [DOI] [PubMed] [Google Scholar]
  5. Davletov B. A., Meunier F. A., Ashton A. C., Matsushita H., Hirst W. D., Lelianova V. G., Wilkin G. P., Dolly J. O., Ushkaryov Y. A. Vesicle exocytosis stimulated by alpha-latrotoxin is mediated by latrophilin and requires both external and stored Ca2+. EMBO J. 1998 Jul 15;17(14):3909–3920. doi: 10.1093/emboj/17.14.3909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davletov B. A., Shamotienko O. G., Lelianova V. G., Grishin E. V., Ushkaryov Y. A. Isolation and biochemical characterization of a Ca2+-independent alpha-latrotoxin-binding protein. J Biol Chem. 1996 Sep 20;271(38):23239–23245. doi: 10.1074/jbc.271.38.23239. [DOI] [PubMed] [Google Scholar]
  7. Elrick D. B., Charlton M. P. alpha-latrocrustatoxin increases neurotransmitter release by activating a calcium influx pathway at crayfish neuromuscular junction. J Neurophysiol. 1999 Dec;82(6):3550–3562. doi: 10.1152/jn.1999.82.6.3550. [DOI] [PubMed] [Google Scholar]
  8. Fraser A. G., Kamath R. S., Zipperlen P., Martinez-Campos M., Sohrmann M., Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000 Nov 16;408(6810):325–330. doi: 10.1038/35042517. [DOI] [PubMed] [Google Scholar]
  9. Frontali N., Ceccarelli B., Gorio A., Mauro A., Siekevitz P., Tzeng M. C., Hurlbut W. P. Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions. J Cell Biol. 1976 Mar;68(3):462–479. doi: 10.1083/jcb.68.3.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geppert M., Khvotchev M., Krasnoperov V., Goda Y., Missler M., Hammer R. E., Ichtchenko K., Petrenko A. G., Südhof T. C. Neurexin I alpha is a major alpha-latrotoxin receptor that cooperates in alpha-latrotoxin action. J Biol Chem. 1998 Jan 16;273(3):1705–1710. doi: 10.1074/jbc.273.3.1705. [DOI] [PubMed] [Google Scholar]
  11. Grishin E. V. Black widow spider toxins: the present and the future. Toxicon. 1998 Nov;36(11):1693–1701. doi: 10.1016/s0041-0101(98)00162-7. [DOI] [PubMed] [Google Scholar]
  12. Ichtchenko K., Khvotchev M., Kiyatkin N., Simpson L., Sugita S., Südhof T. C. alpha-latrotoxin action probed with recombinant toxin: receptors recruit alpha-latrotoxin but do not transduce an exocytotic signal. EMBO J. 1998 Nov 2;17(21):6188–6199. doi: 10.1093/emboj/17.21.6188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iwasaki K., Staunton J., Saifee O., Nonet M., Thomas J. H. aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron. 1997 Apr;18(4):613–622. doi: 10.1016/s0896-6273(00)80302-5. [DOI] [PubMed] [Google Scholar]
  14. Kamath Ravi S., Ahringer Julie. Genome-wide RNAi screening in Caenorhabditis elegans. Methods. 2003 Aug;30(4):313–321. doi: 10.1016/s1046-2023(03)00050-1. [DOI] [PubMed] [Google Scholar]
  15. Khvotchev M., Südhof T. C. alpha-latrotoxin triggers transmitter release via direct insertion into the presynaptic plasma membrane. EMBO J. 2000 Jul 3;19(13):3250–3262. doi: 10.1093/emboj/19.13.3250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Krasnoperov V. G., Beavis R., Chepurny O. G., Little A. R., Plotnikov A. N., Petrenko A. G. The calcium-independent receptor of alpha-latrotoxin is not a neurexin. Biochem Biophys Res Commun. 1996 Oct 23;227(3):868–875. doi: 10.1006/bbrc.1996.1598. [DOI] [PubMed] [Google Scholar]
  17. Krasnoperov V. G., Bittner M. A., Beavis R., Kuang Y., Salnikow K. V., Chepurny O. G., Little A. R., Plotnikov A. N., Wu D., Holz R. W. alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron. 1997 Jun;18(6):925–937. doi: 10.1016/s0896-6273(00)80332-3. [DOI] [PubMed] [Google Scholar]
  18. Krasnoperov V., Bittner M. A., Holz R. W., Chepurny O., Petrenko A. G. Structural requirements for alpha-latrotoxin binding and alpha-latrotoxin-stimulated secretion. A study with calcium-independent receptor of alpha-latrotoxin (CIRL) deletion mutants. J Biol Chem. 1999 Feb 5;274(6):3590–3596. doi: 10.1074/jbc.274.6.3590. [DOI] [PubMed] [Google Scholar]
  19. Lelianova V. G., Davletov B. A., Sterling A., Rahman M. A., Grishin E. V., Totty N. F., Ushkaryov Y. A. Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem. 1997 Aug 22;272(34):21504–21508. doi: 10.1074/jbc.272.34.21504. [DOI] [PubMed] [Google Scholar]
  20. Longenecker H. E., Jr, Hurlbut W. P., Mauro A., Clark A. W. Effects of black widow spider venom on the frog neuromuscular junction. Effects on end-plate potential, miniature end-plate potential and nerve terminal spike. Nature. 1970 Feb 21;225(5234):701–703. doi: 10.1038/225701a0. [DOI] [PubMed] [Google Scholar]
  21. Nonet M. L., Grundahl K., Meyer B. J., Rand J. B. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell. 1993 Jul 2;73(7):1291–1305. doi: 10.1016/0092-8674(93)90357-v. [DOI] [PubMed] [Google Scholar]
  22. Orlova E. V., Rahman M. A., Gowen B., Volynski K. E., Ashton A. C., Manser C., van Heel M., Ushkaryov Y. A. Structure of alpha-latrotoxin oligomers reveals that divalent cation-dependent tetramers form membrane pores. Nat Struct Biol. 2000 Jan;7(1):48–53. doi: 10.1038/71247. [DOI] [PubMed] [Google Scholar]
  23. Saeger B., Schmitt-Wrede H. P., Dehnhardt M., Benten W. P., Krücken J., Harder A., Von Samson-Himmelstjerna G., Wiegand H., Wunderlich F. Latrophilin-like receptor from the parasitic nematode Haemonchus contortus as target for the anthelmintic depsipeptide PF1022A. FASEB J. 2001 May;15(7):1332–1334. doi: 10.1096/fj.00-0664fje. [DOI] [PubMed] [Google Scholar]
  24. Schaefer A. M., Hadwiger G. D., Nonet M. L. rpm-1, a conserved neuronal gene that regulates targeting and synaptogenesis in C. elegans. Neuron. 2000 May;26(2):345–356. doi: 10.1016/s0896-6273(00)81168-x. [DOI] [PubMed] [Google Scholar]
  25. Stein L., Sternberg P., Durbin R., Thierry-Mieg J., Spieth J. WormBase: network access to the genome and biology of Caenorhabditis elegans. Nucleic Acids Res. 2001 Jan 1;29(1):82–86. doi: 10.1093/nar/29.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sugita S., Janz R., Südhof T. C. Synaptogyrins regulate Ca2+-dependent exocytosis in PC12 cells. J Biol Chem. 1999 Jul 2;274(27):18893–18901. doi: 10.1074/jbc.274.27.18893. [DOI] [PubMed] [Google Scholar]
  27. Südhof T. C. alpha-Latrotoxin and its receptors: neurexins and CIRL/latrophilins. Annu Rev Neurosci. 2001;24:933–962. doi: 10.1146/annurev.neuro.24.1.933. [DOI] [PubMed] [Google Scholar]
  28. Take-Uchi M., Kawakami M., Ishihara T., Amano T., Kondo K., Katsura I. An ion channel of the degenerin/epithelial sodium channel superfamily controls the defecation rhythm in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11775–11780. doi: 10.1073/pnas.95.20.11775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thomas J. H. Genetic analysis of defecation in Caenorhabditis elegans. Genetics. 1990 Apr;124(4):855–872. doi: 10.1093/genetics/124.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Timmons L., Court D. L., Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. 2001 Jan 24;263(1-2):103–112. doi: 10.1016/s0378-1119(00)00579-5. [DOI] [PubMed] [Google Scholar]
  31. Umbach J. A., Grasso A., Zurcher S. D., Kornblum H. I., Mastrogiacomo A., Gundersen C. B. Electrical and optical monitoring of alpha-latrotoxin action at Drosophila neuromuscular junctions. Neuroscience. 1998 Dec;87(4):913–924. doi: 10.1016/s0306-4522(98)00664-2. [DOI] [PubMed] [Google Scholar]
  32. Ushkaryov Y. A., Petrenko A. G., Geppert M., Südhof T. C. Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science. 1992 Jul 3;257(5066):50–56. doi: 10.1126/science.1621094. [DOI] [PubMed] [Google Scholar]
  33. Volynski K. E., Meunier F. A., Lelianova V. G., Dudina E. E., Volkova T. M., Rahman M. A., Manser C., Grishin E. V., Dolly J. O., Ashley R. H. Latrophilin, neurexin, and their signaling-deficient mutants facilitate alpha -latrotoxin insertion into membranes but are not involved in pore formation. J Biol Chem. 2000 Dec 29;275(52):41175–41183. doi: 10.1074/jbc.M005857200. [DOI] [PubMed] [Google Scholar]
  34. Zhao H., Nonet M. L. A conserved mechanism of synaptogyrin localization. Mol Biol Cell. 2001 Aug;12(8):2275–2289. doi: 10.1091/mbc.12.8.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES