Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 15;378(Pt 1):213–217. doi: 10.1042/BJ20031193

Mitochondrial cytochrome c release may occur by volume-dependent mechanisms not involving permeability transition.

Vladimir Gogvadze 1, John D Robertson 1, Mari Enoksson 1, Boris Zhivotovsky 1, Sten Orrenius 1
PMCID: PMC1223940  PMID: 14629197

Abstract

The mechanisms regulating mitochondrial outer-membrane permeabilization and the release of cytochrome c during apoptosis remain controversial. In the present study, we show in an in vitro model system that the release of cytochrome c may occur via moderate modulation of mitochondrial volume, irrespective of the mechanism leading to the mitochondrial swelling. In contrast with mitochondrial permeability transition-dependent release of cytochrome c, in the present study mitochondria remain intact and functionally active.

Full Text

The Full Text of this article is available as a PDF (175.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beavis A. D., Lu Y., Garlid K. D. On the regulation of K+ uniport in intact mitochondria by adenine nucleotides and nucleotide analogs. J Biol Chem. 1993 Jan 15;268(2):997–1004. [PubMed] [Google Scholar]
  2. Bortner C. D., Cidlowski J. A. Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am J Physiol. 1996 Sep;271(3 Pt 1):C950–C961. doi: 10.1152/ajpcell.1996.271.3.C950. [DOI] [PubMed] [Google Scholar]
  3. Bortner C. D., Cidlowski J. A. Caspase independent/dependent regulation of K(+), cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem. 1999 Jul 30;274(31):21953–21962. doi: 10.1074/jbc.274.31.21953. [DOI] [PubMed] [Google Scholar]
  4. Cain K., Langlais C., Sun X. M., Brown D. G., Cohen G. M. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem. 2001 Sep 11;276(45):41985–41990. doi: 10.1074/jbc.M107419200. [DOI] [PubMed] [Google Scholar]
  5. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999 Jul 15;341(Pt 2):233–249. [PMC free article] [PubMed] [Google Scholar]
  6. Das Manika, Parker Joanne E., Halestrap Andrew P. Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria. J Physiol. 2003 Jan 31;547(Pt 3):893–902. doi: 10.1113/jphysiol.2002.035006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davidson A. M., Halestrap A. P. Partial inhibition by cyclosporin A of the swelling of liver mitochondria in vivo and in vitro induced by sub-micromolar [Ca2+], but not by butyrate. Evidence for two distinct swelling mechanisms. Biochem J. 1990 May 15;268(1):147–152. doi: 10.1042/bj2680147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duszyński J., Wojtczak L. Effect of Mg2+ depletion of mitochondria on their permeability to K+: the mechanism by which ionophore A23187 increases K+ permeability. Biochem Biophys Res Commun. 1977 Jan 24;74(2):417–424. doi: 10.1016/0006-291x(77)90320-5. [DOI] [PubMed] [Google Scholar]
  9. Eliseev Roman A., Gunter Karlene K., Gunter Thomas E. Bcl-2 sensitive mitochondrial potassium accumulation and swelling in apoptosis. Mitochondrion. 2002 Feb;1(4):361–370. doi: 10.1016/s1567-7249(01)00039-3. [DOI] [PubMed] [Google Scholar]
  10. Eliseev Roman A., Salter Jason D., Gunter Karlene K., Gunter Thomas E. Bcl-2 and tBid proteins counter-regulate mitochondrial potassium transport. Biochim Biophys Acta. 2003 Apr 18;1604(1):1–5. doi: 10.1016/s0005-2728(03)00005-7. [DOI] [PubMed] [Google Scholar]
  11. Garlid K. D. Cation transport in mitochondria--the potassium cycle. Biochim Biophys Acta. 1996 Jul 18;1275(1-2):123–126. doi: 10.1016/0005-2728(96)00061-8. [DOI] [PubMed] [Google Scholar]
  12. Gogvadze V., Robertson J. D., Zhivotovsky B., Orrenius S. Cytochrome c release occurs via Ca2+-dependent and Ca2+-independent mechanisms that are regulated by Bax. J Biol Chem. 2001 Mar 22;276(22):19066–19071. doi: 10.1074/jbc.M100614200. [DOI] [PubMed] [Google Scholar]
  13. Halestrap A. P., Quinlan P. T., Whipps D. E., Armston A. E. Regulation of the mitochondrial matrix volume in vivo and in vitro. The role of calcium. Biochem J. 1986 Jun 15;236(3):779–787. doi: 10.1042/bj2360779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Halestrap Andrew P., McStay Gavin P., Clarke Samantha J. The permeability transition pore complex: another view. Biochimie. 2002 Feb-Mar;84(2-3):153–166. doi: 10.1016/s0300-9084(02)01375-5. [DOI] [PubMed] [Google Scholar]
  15. Hughes F. M., Jr, Cidlowski J. A. Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul. 1999;39:157–171. doi: 10.1016/s0065-2571(98)00010-7. [DOI] [PubMed] [Google Scholar]
  16. Inoue I., Nagase H., Kishi K., Higuti T. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature. 1991 Jul 18;352(6332):244–247. doi: 10.1038/352244a0. [DOI] [PubMed] [Google Scholar]
  17. Jung D. W., Shi G. Y., Brierley G. P. Induction of passive monovalent cation-exchange activity in heart mitochondria by depletion of endogenous divalent cations. Arch Biochem Biophys. 1981 Jul;209(2):356–361. doi: 10.1016/0003-9861(81)90292-7. [DOI] [PubMed] [Google Scholar]
  18. Maeno E., Ishizaki Y., Kanaseki T., Hazama A., Okada Y. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9487–9492. doi: 10.1073/pnas.140216197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Marchetti P., Castedo M., Susin S. A., Zamzami N., Hirsch T., Macho A., Haeffner A., Hirsch F., Geuskens M., Kroemer G. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med. 1996 Sep 1;184(3):1155–1160. doi: 10.1084/jem.184.3.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Robertson J. D., Zhivotovsky B., Gogvadze V., Orrenius S. Outer mitochondrial membrane permeabilization: an open-and-shut case? Cell Death Differ. 2003 May;10(5):485–487. doi: 10.1038/sj.cdd.4401218. [DOI] [PubMed] [Google Scholar]
  21. Siemen D., Loupatatzis C., Borecky J., Gulbins E., Lang F. Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun. 1999 Apr 13;257(2):549–554. doi: 10.1006/bbrc.1999.0496. [DOI] [PubMed] [Google Scholar]
  22. Szewczyk A. The ATP-regulated K+ channel in mitochondria: five years after its discovery. Acta Biochim Pol. 1996;43(4):713–719. [PubMed] [Google Scholar]
  23. Xu Wenhong, Liu Yongge, Wang Sheng, McDonald Todd, Van Eyk Jennifer E., Sidor Agnieszka, O'Rourke Brian. Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science. 2002 Nov 1;298(5595):1029–1033. doi: 10.1126/science.1074360. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES