Abstract
Previous enzyme kinetic and structural studies have revealed a critical role for Asp181 (PTP1B numbering) in PTP (protein-tyrosine phosphatase)-mediated catalysis. In the E-P (phosphoenzyme) formation step, Asp181 functions as a general acid, while in the E-P hydrolysis step it acts as a general base. Most of our understanding of the role of Asp181 is derived from studies with the Yersinia PTP and the mammalian PTP1B, and to some extent also TC (T-cell)-PTP and the related PTPa and PTPe. The neighbouring residue 182 is a phenylalanine in these four mammalian enzymes and a glutamine in Yersinia PTP. Surprisingly, little attention has been paid to the fact that this residue is a histidine in most other mammalian PTPs. Using a reciprocal single-point mutational approach with introduction of His182 in PTP1B and Phe182 in PTPH1, we demonstrate here that His182-PTPs, in comparison with Phe182-PTPs, have significantly decreased kcat values, and to a lesser degree, decreased kcat/Km values. Combined enzyme kinetic, X-ray crystallographic and molecular dynamics studies indicate that the effect of His182 is due to interactions with Asp181 and with Gln262. We conclude that residue 182 can modulate the functionality of both Asp181 and Gln262 and therefore affect the E-P hydrolysis step of PTP-mediated catalysis.
Full Text
The Full Text of this article is available as a PDF (377.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen H. S., Iversen L. F., Jeppesen C. B., Branner S., Norris K., Rasmussen H. B., Møller K. B., Møller N. P. 2-(oxalylamino)-benzoic acid is a general, competitive inhibitor of protein-tyrosine phosphatases. J Biol Chem. 2000 Mar 10;275(10):7101–7108. doi: 10.1074/jbc.275.10.7101. [DOI] [PubMed] [Google Scholar]
- Andersen J. N., Mortensen O. H., Peters G. H., Drake P. G., Iversen L. F., Olsen O. H., Jansen P. G., Andersen H. S., Tonks N. K., Møller N. P. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol. 2001 Nov;21(21):7117–7136. doi: 10.1128/MCB.21.21.7117-7136.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barford D., Das A. K., Egloff M. P. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct. 1998;27:133–164. doi: 10.1146/annurev.biophys.27.1.133. [DOI] [PubMed] [Google Scholar]
- Black M. J., Jones M. E. Inorganic phosphate determination in the presence of a labile organic phosphate: assay for carbamyl phosphate phosphatase activity. Anal Biochem. 1983 Nov;135(1):233–238. doi: 10.1016/0003-2697(83)90756-x. [DOI] [PubMed] [Google Scholar]
- Deng Hua, Callender Robert, Huang Zhonghui, Zhang Zhong-Yin. Is the PTPase-vanadate complex a true transition state analogue? Biochemistry. 2002 May 7;41(18):5865–5872. doi: 10.1021/bi016097z. [DOI] [PubMed] [Google Scholar]
- Denu J. M., Dixon J. E. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr Opin Chem Biol. 1998 Oct;2(5):633–641. doi: 10.1016/s1367-5931(98)80095-1. [DOI] [PubMed] [Google Scholar]
- Denu J. M., Lohse D. L., Vijayalakshmi J., Saper M. A., Dixon J. E. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2493–2498. doi: 10.1073/pnas.93.6.2493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis K. J., Morrison J. F. Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol. 1982;87:405–426. doi: 10.1016/s0076-6879(82)87025-0. [DOI] [PubMed] [Google Scholar]
- Elson A., Leder P. Identification of a cytoplasmic, phorbol ester-inducible isoform of protein tyrosine phosphatase epsilon. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12235–12239. doi: 10.1073/pnas.92.26.12235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flint A. J., Tiganis T., Barford D., Tonks N. K. Development of "substrate-trapping" mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1680–1685. doi: 10.1073/pnas.94.5.1680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frangioni J. V., Oda A., Smith M., Salzman E. W., Neel B. G. Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO J. 1993 Dec;12(12):4843–4856. doi: 10.1002/j.1460-2075.1993.tb06174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon J. A. Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol. 1991;201:477–482. doi: 10.1016/0076-6879(91)01043-2. [DOI] [PubMed] [Google Scholar]
- Guan K. L., Dixon J. E. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem. 1991 Sep 15;266(26):17026–17030. [PubMed] [Google Scholar]
- Guo Xiao-Ling, Shen Kui, Wang Fang, Lawrence David S., Zhang Zhong-Yin. Probing the molecular basis for potent and selective protein-tyrosine phosphatase 1B inhibition. J Biol Chem. 2002 Aug 21;277(43):41014–41022. doi: 10.1074/jbc.M207347200. [DOI] [PubMed] [Google Scholar]
- Hengge A. C., Sowa G. A., Wu L., Zhang Z. Y. Nature of the transition state of the protein-tyrosine phosphatase-catalyzed reaction. Biochemistry. 1995 Oct 31;34(43):13982–13987. doi: 10.1021/bi00043a003. [DOI] [PubMed] [Google Scholar]
- Hoff R. H., Hengge A. C., Wu L., Keng Y. F., Zhang Z. Y. Effects on general acid catalysis from mutations of the invariant tryptophan and arginine residues in the protein tyrosine phosphatase from Yersinia. Biochemistry. 2000 Jan 11;39(1):46–54. doi: 10.1021/bi991570i. [DOI] [PubMed] [Google Scholar]
- Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989 Apr 15;77(1):61–68. doi: 10.1016/0378-1119(89)90359-4. [DOI] [PubMed] [Google Scholar]
- Hunter T. Signaling--2000 and beyond. Cell. 2000 Jan 7;100(1):113–127. doi: 10.1016/s0092-8674(00)81688-8. [DOI] [PubMed] [Google Scholar]
- Iversen L. F., Andersen H. S., Branner S., Mortensen S. B., Peters G. H., Norris K., Olsen O. H., Jeppesen C. B., Lundt B. F., Ripka W. Structure-based design of a low molecular weight, nonphosphorus, nonpeptide, and highly selective inhibitor of protein-tyrosine phosphatase 1B. J Biol Chem. 2000 Apr 7;275(14):10300–10307. doi: 10.1074/jbc.275.14.10300. [DOI] [PubMed] [Google Scholar]
- Iversen L. F., Andersen H. S., Møller K. B., Olsen O. H., Peters G. H., Branner S., Mortensen S. B., Hansen T. K., Lau J., Ge Y. Steric hindrance as a basis for structure-based design of selective inhibitors of protein-tyrosine phosphatases. Biochemistry. 2001 Dec 11;40(49):14812–14820. doi: 10.1021/bi011389l. [DOI] [PubMed] [Google Scholar]
- Iversen Lars Fogh, Moller Karin Bach, Pedersen Anja K., Peters Gunther H., Petersen Annette S., Andersen Henrik Sune, Branner Sven, Mortensen Steen B., Moller Niels Peter Hundahl. Structure determination of T cell protein-tyrosine phosphatase. J Biol Chem. 2002 Mar 20;277(22):19982–19990. doi: 10.1074/jbc.M200567200. [DOI] [PubMed] [Google Scholar]
- Jia Z., Barford D., Flint A. J., Tonks N. K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science. 1995 Jun 23;268(5218):1754–1758. doi: 10.1126/science.7540771. [DOI] [PubMed] [Google Scholar]
- Keng Y. F., Wu L., Zhang Z. Y. Probing the function of the conserved tryptophan in the flexible loop of the Yersinia protein-tyrosine phosphatase. Eur J Biochem. 1999 Feb;259(3):809–814. doi: 10.1046/j.1432-1327.1999.00090.x. [DOI] [PubMed] [Google Scholar]
- Kleywegt G. J., Jones T. A. Phi/psi-chology: Ramachandran revisited. Structure. 1996 Dec 15;4(12):1395–1400. doi: 10.1016/s0969-2126(96)00147-5. [DOI] [PubMed] [Google Scholar]
- Lammers R., Bossenmaier B., Cool D. E., Tonks N. K., Schlessinger J., Fischer E. H., Ullrich A. Differential activities of protein tyrosine phosphatases in intact cells. J Biol Chem. 1993 Oct 25;268(30):22456–22462. [PubMed] [Google Scholar]
- Lohse D. L., Denu J. M., Santoro N., Dixon J. E. Roles of aspartic acid-181 and serine-222 in intermediate formation and hydrolysis of the mammalian protein-tyrosine-phosphatase PTP1. Biochemistry. 1997 Apr 15;36(15):4568–4575. doi: 10.1021/bi963094r. [DOI] [PubMed] [Google Scholar]
- Neel B. G., Tonks N. K. Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol. 1997 Apr;9(2):193–204. doi: 10.1016/s0955-0674(97)80063-4. [DOI] [PubMed] [Google Scholar]
- Pannifer A. D., Flint A. J., Tonks N. K., Barford D. Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by x-ray crystallography. J Biol Chem. 1998 Apr 24;273(17):10454–10462. doi: 10.1074/jbc.273.17.10454. [DOI] [PubMed] [Google Scholar]
- Peters G. H., Iversen L. F., Branner S., Andersen H. S., Mortensen S. B., Olsen O. H., Moller K. B., Moller N. P. Residue 259 is a key determinant of substrate specificity of protein-tyrosine phosphatases 1B and alpha. J Biol Chem. 2000 Jun 16;275(24):18201–18209. doi: 10.1074/jbc.M910273199. [DOI] [PubMed] [Google Scholar]
- Ravichandran L. V., Chen H., Li Y., Quon M. J. Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Mol Endocrinol. 2001 Oct;15(10):1768–1780. doi: 10.1210/mend.15.10.0711. [DOI] [PubMed] [Google Scholar]
- Sarmiento M., Zhao Y., Gordon S. J., Zhang Z. Y. Molecular basis for substrate specificity of protein-tyrosine phosphatase 1B. J Biol Chem. 1998 Oct 9;273(41):26368–26374. doi: 10.1074/jbc.273.41.26368. [DOI] [PubMed] [Google Scholar]
- Shifrin V. I., Neel B. G. Growth factor-inducible alternative splicing of nontransmembrane phosphotyrosine phosphatase PTP-1B pre-mRNA. J Biol Chem. 1993 Dec 5;268(34):25376–25384. [PubMed] [Google Scholar]
- Tabiti K., Cui L., Chhatwal V. J., Moochhala S., Ngoi S. S., Pallen C. J. Novel alternative splicing predicts a secreted extracellular isoform of the human receptor-like protein tyrosine phosphatase LAR. Gene. 1996 Oct 10;175(1-2):7–13. doi: 10.1016/0378-1119(96)00113-8. [DOI] [PubMed] [Google Scholar]
- Tonks N. K., Neel B. G. Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol. 2001 Apr;13(2):182–195. doi: 10.1016/s0955-0674(00)00196-4. [DOI] [PubMed] [Google Scholar]
- Wu L., Zhang Z. Y. Probing the function of Asp128 in the lower molecular weight protein-tyrosine phosphatase-catalyzed reaction. A pre-steady-state and steady-state kinetic investigation. Biochemistry. 1996 Apr 30;35(17):5426–5434. doi: 10.1021/bi952885a. [DOI] [PubMed] [Google Scholar]
- Xie Laiping, Zhang Yan-Ling, Zhang Zhong-Yin. Design and characterization of an improved protein tyrosine phosphatase substrate-trapping mutant. Biochemistry. 2002 Mar 26;41(12):4032–4039. doi: 10.1021/bi015904r. [DOI] [PubMed] [Google Scholar]
- Yang J., Liang X., Niu T., Meng W., Zhao Z., Zhou G. W. Crystal structure of the catalytic domain of protein-tyrosine phosphatase SHP-1. J Biol Chem. 1998 Oct 23;273(43):28199–28207. doi: 10.1074/jbc.273.43.28199. [DOI] [PubMed] [Google Scholar]
- Yang Q., Tonks N. K. Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4.1, ezrin, and talin. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):5949–5953. doi: 10.1073/pnas.88.14.5949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Z. Y. Kinetic and mechanistic characterization of a mammalian protein-tyrosine phosphatase, PTP1. J Biol Chem. 1995 May 12;270(19):11199–11204. doi: 10.1074/jbc.270.19.11199. [DOI] [PubMed] [Google Scholar]
- Zhang Z. Y., Maclean D., Thieme-Sefler A. M., Roeske R. W., Dixon J. E. A continuous spectrophotometric and fluorimetric assay for protein tyrosine phosphatase using phosphotyrosine-containing peptides. Anal Biochem. 1993 May 15;211(1):7–15. doi: 10.1006/abio.1993.1224. [DOI] [PubMed] [Google Scholar]
- Zhang Z. Y., Malachowski W. P., Van Etten R. L., Dixon J. E. Nature of the rate-determining steps of the reaction catalyzed by the Yersinia protein-tyrosine phosphatase. J Biol Chem. 1994 Mar 18;269(11):8140–8145. [PubMed] [Google Scholar]
- Zhang Z. Y., Palfey B. A., Wu L., Zhao Y. Catalytic function of the conserved hydroxyl group in the protein tyrosine phosphatase signature motif. Biochemistry. 1995 Dec 19;34(50):16389–16396. doi: 10.1021/bi00050a020. [DOI] [PubMed] [Google Scholar]
- Zhang Z. Y. Protein-tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis. Crit Rev Biochem Mol Biol. 1998;33(1):1–52. doi: 10.1080/10409239891204161. [DOI] [PubMed] [Google Scholar]
- Zhang Z. Y., VanEtten R. L. Pre-steady-state and steady-state kinetic analysis of the low molecular weight phosphotyrosyl protein phosphatase from bovine heart. J Biol Chem. 1991 Jan 25;266(3):1516–1525. [PubMed] [Google Scholar]
- Zhang Z. Y., Wang Y., Dixon J. E. Dissecting the catalytic mechanism of protein-tyrosine phosphatases. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1624–1627. doi: 10.1073/pnas.91.5.1624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao Y., Wu L., Noh S. J., Guan K. L., Zhang Z. Y. Altering the nucleophile specificity of a protein-tyrosine phosphatase-catalyzed reaction. Probing the function of the invariant glutamine residues. J Biol Chem. 1998 Mar 6;273(10):5484–5492. doi: 10.1074/jbc.273.10.5484. [DOI] [PubMed] [Google Scholar]
