Abstract
Calpain B is one of the two calpain homologues in Drosophila melanogaster that are proteolytically active. We studied its activation by Ca2+ both in vitro and in vivo, in Schneider (S2) cells. Activation involves the autolytic cleavage, at two major sites, of the N-terminal segment, the length of which was earlier underestimated. Site-directed mutagenesis at the autolytic sites did not prevent autolysis, but only shifted its sites. Calpain B mRNA was detectable in all developmental stages of the fly. In situ hybridization and immunostaining showed expression in ovaries, embryo and larvae, with high abundance in larval salivary glands. In S2 cells, calpain B was mainly in the cytoplasm and upon a rise in Ca2+ the enzyme adhered to intracellular membranes.
Full Text
The Full Text of this article is available as a PDF (196.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baki A., Tompa P., Alexa A., Molnár O., Friedrich P. Autolysis parallels activation of mu-calpain. Biochem J. 1996 Sep 15;318(Pt 3):897–901. doi: 10.1042/bj3180897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brøns-Poulsen J., Petersen N. E., Hørder M., Kristiansen K. An improved PCR-based method for site directed mutagenesis using megaprimers. Mol Cell Probes. 1998 Dec;12(6):345–348. doi: 10.1006/mcpr.1998.0187. [DOI] [PubMed] [Google Scholar]
- DeMartino G. N., Huff C. A., Croall D. E. Autoproteolysis of the small subunit of calcium-dependent protease II activates and regulates protease activity. J Biol Chem. 1986 Sep 15;261(26):12047–12052. [PubMed] [Google Scholar]
- Delaney S. J., Hayward D. C., Barleben F., Fischbach K. F., Miklos G. L. Molecular cloning and analysis of small optic lobes, a structural brain gene of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7214–7218. doi: 10.1073/pnas.88.16.7214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denning Daniel P., Patel Samir S., Uversky Vladimir, Fink Anthony L., Rexach Michael. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci U S A. 2003 Feb 25;100(5):2450–2455. doi: 10.1073/pnas.0437902100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elce J. S., Hegadorn C., Arthur J. S. Autolysis, Ca2+ requirement, and heterodimer stability in m-calpain. J Biol Chem. 1997 Apr 25;272(17):11268–11275. doi: 10.1074/jbc.272.17.11268. [DOI] [PubMed] [Google Scholar]
- Ephrussi A., Dickinson L. K., Lehmann R. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell. 1991 Jul 12;66(1):37–50. doi: 10.1016/0092-8674(91)90137-n. [DOI] [PubMed] [Google Scholar]
- Glading Angela, Lauffenburger Douglas A., Wells Alan. Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol. 2002 Jan;12(1):46–54. doi: 10.1016/s0962-8924(01)02179-1. [DOI] [PubMed] [Google Scholar]
- Horikawa Y., Oda N., Cox N. J., Li X., Orho-Melander M., Hara M., Hinokio Y., Lindner T. H., Mashima H., Schwarz P. E. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet. 2000 Oct;26(2):163–175. doi: 10.1038/79876. [DOI] [PubMed] [Google Scholar]
- Hosfield C. M., Elce J. S., Davies P. L., Jia Z. Crystal structure of calpain reveals the structural basis for Ca(2+)-dependent protease activity and a novel mode of enzyme activation. EMBO J. 1999 Dec 15;18(24):6880–6889. doi: 10.1093/emboj/18.24.6880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jockusch Harald, Voigt Sylvana, Eberhard Daniel. Localization of GFP in frozen sections from unfixed mouse tissues: immobilization of a highly soluble marker protein by formaldehyde vapor. J Histochem Cytochem. 2003 Mar;51(3):401–404. doi: 10.1177/002215540305100315. [DOI] [PubMed] [Google Scholar]
- Jékely G., Friedrich P. Characterization of two recombinant Drosophila calpains. CALPA and a novel homolog, CALPB. J Biol Chem. 1999 Aug 20;274(34):23893–23900. doi: 10.1074/jbc.274.34.23893. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Margis Rogério, Margis-Pinheiro Márcia. Phytocalpains: orthologous calcium-dependent cysteine proteinases. Trends Plant Sci. 2003 Feb;8(2):58–62. doi: 10.1016/S1360-1385(02)00011-0. [DOI] [PubMed] [Google Scholar]
- Matus A. GFP moves on. Trends Cell Biol. 2001 May;11(5):183–183. doi: 10.1016/s0962-8924(01)01972-9. [DOI] [PubMed] [Google Scholar]
- Mellgren R. L., Lu Q. Selective nuclear transport of mu-calpain. Biochem Biophys Res Commun. 1994 Oct 28;204(2):544–550. doi: 10.1006/bbrc.1994.2493. [DOI] [PubMed] [Google Scholar]
- Ono Y., Sorimachi H., Suzuki K. Structure and physiology of calpain, an enigmatic protease. Biochem Biophys Res Commun. 1998 Apr 17;245(2):289–294. doi: 10.1006/bbrc.1998.8085. [DOI] [PubMed] [Google Scholar]
- Pintér M., Friedrich P. The calcium-dependent proteolytic system calpain-calpastatin in Drosophila melanogaster. Biochem J. 1988 Jul 15;253(2):467–473. doi: 10.1042/bj2530467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pintér M., Stierandova A., Friedrich P. Purification and characterization of a Ca(2+)-activated thiol protease from Drosophila melanogaster. Biochemistry. 1992 Sep 8;31(35):8201–8206. doi: 10.1021/bi00150a012. [DOI] [PubMed] [Google Scholar]
- Reiersen H., Rees A. R. The hunchback and its neighbours: proline as an environmental modulator. Trends Biochem Sci. 2001 Nov;26(11):679–684. doi: 10.1016/s0968-0004(01)01957-0. [DOI] [PubMed] [Google Scholar]
- Richard I., Broux O., Allamand V., Fougerousse F., Chiannilkulchai N., Bourg N., Brenguier L., Devaud C., Pasturaud P., Roudaut C. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 1995 Apr 7;81(1):27–40. doi: 10.1016/0092-8674(95)90368-2. [DOI] [PubMed] [Google Scholar]
- Saido T. C., Nagao S., Shiramine M., Tsukaguchi M., Sorimachi H., Murofushi H., Tsuchiya T., Ito H., Suzuki K. Autolytic transition of mu-calpain upon activation as resolved by antibodies distinguishing between the pre- and post-autolysis forms. J Biochem. 1992 Jan;111(1):81–86. doi: 10.1093/oxfordjournals.jbchem.a123723. [DOI] [PubMed] [Google Scholar]
- Schád Eva, Farkas Attila, Jékely Gáspár, Tompa Peter, Friedrich Peter. A novel human small subunit of calpains. Biochem J. 2002 Mar 1;362(Pt 2):383–388. doi: 10.1042/0264-6021:3620383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorimachi H., Suzuki K. The structure of calpain. J Biochem. 2001 May;129(5):653–664. doi: 10.1093/oxfordjournals.jbchem.a002903. [DOI] [PubMed] [Google Scholar]
- Spadoni Cesare, Farkas Attila, Sinka Rita, Tompa Peter, Friedrich Peter. Molecular cloning and RNA expression of a novel Drosophila calpain, Calpain C. Biochem Biophys Res Commun. 2003 Mar 28;303(1):343–349. doi: 10.1016/s0006-291x(03)00350-4. [DOI] [PubMed] [Google Scholar]
- Strobl S., Fernandez-Catalan C., Braun M., Huber R., Masumoto H., Nakagawa K., Irie A., Sorimachi H., Bourenkow G., Bartunik H. The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):588–592. doi: 10.1073/pnas.97.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki K., Tsuji S., Kubota S., Kimura Y., Imahori K. Limited autolysis of Ca2+-activated neutral protease (CANP) changes its sensitivity to Ca2+ ions. J Biochem. 1981 Jul;90(1):275–278. doi: 10.1093/oxfordjournals.jbchem.a133463. [DOI] [PubMed] [Google Scholar]
- Theopold U., Pintér M., Daffre S., Tryselius Y., Friedrich P., Nässel D. R., Hultmark D. CalpA, a Drosophila calpain homolog specifically expressed in a small set of nerve, midgut, and blood cells. Mol Cell Biol. 1995 Feb;15(2):824–834. doi: 10.1128/mcb.15.2.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Todd Bice, Moore Dwight, Deivanayagam Champion C. S., Lin Guang-da, Chattopadhyay Debasish, Maki Masatoshi, Wang Kevin K. W., Narayana Sthanam V. L. A structural model for the inhibition of calpain by calpastatin: crystal structures of the native domain VI of calpain and its complexes with calpastatin peptide and a small molecule inhibitor. J Mol Biol. 2003 Apr 18;328(1):131–146. doi: 10.1016/s0022-2836(03)00274-2. [DOI] [PubMed] [Google Scholar]
- Tompa Peter. Intrinsically unstructured proteins. Trends Biochem Sci. 2002 Oct;27(10):527–533. doi: 10.1016/s0968-0004(02)02169-2. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshizawa T., Sorimachi H., Tomioka S., Ishiura S., Suzuki K. A catalytic subunit of calpain possesses full proteolytic activity. FEBS Lett. 1995 Jan 16;358(1):101–103. doi: 10.1016/0014-5793(94)01401-l. [DOI] [PubMed] [Google Scholar]
