Abstract
MTs (metallothioneins) increase the resistance of cells to exposure to high Cu (copper) levels. Characterization of the MT-Cu complex suggests that MT has an important role in the cellular storage and/or delivery of Cu ions to cuproenzymes. In this work we investigate how these properties contribute to Cu homoeostasis by evaluating the uptake, accumulation and efflux of Cu in wild-type and MT I/II null rat fibroblast cell lines. We also assessed changes in the expression of Cu metabolism-related genes in response to Cu exposure. At sub-physiological Cu levels (0.4 microM), the metal content was not dependent on MT; however, when extracellular Cu was increased to physiological levels (10 microM), MTs were required for the cell's ability to accumulate the metal. The subcellular localization of the accumulated metal in the cytoplasm was MT-dependent. Following supra-physiological Cu exposure (>50 microM), MT null cells had a decreased capacity for Cu storage and an elevated sensitivity to a minor increment in intracellular metal levels, suggesting that intracellular Cu toxicity is due not to the metal content but to the interactions of the metal with cellular components. Moreover, MT null cells failed to show increased levels of mRNAs encoding MT I, SOD1 (superoxide dismutase 1) and Ccs1 (Cu chaperone for SOD) in response to Cu exposure. These results support a role for MT in the storage of Cu in a safe compartment and in sequestering an intracellular excess of Cu in response to supra-physiological Cu exposure. Gene expression analysis suggests the necessity of having MT as part of the signalling pathway that induces gene expression in response to Cu.
Full Text
The Full Text of this article is available as a PDF (183.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arredondo M., Uauy R., González M. Regulation of copper uptake and transport in intestinal cell monolayers by acute and chronic copper exposure. Biochim Biophys Acta. 2000 Apr 6;1474(2):169–176. doi: 10.1016/s0304-4165(00)00015-5. [DOI] [PubMed] [Google Scholar]
- Asanuma Masato, Miyazaki Ikuko, Higashi Youichirou, Tanaka Ken-ichi, Haque Md Emdadul, Fujita Naoko, Ogawa Norio. Aggravation of 6-hydroxydopamine-induced dopaminergic lesions in metallothionein-I and -II knock-out mouse brain. Neurosci Lett. 2002 Jul 12;327(1):61–65. doi: 10.1016/s0304-3940(02)00346-4. [DOI] [PubMed] [Google Scholar]
- Bingham M. J., Sargeson A. M., McArdle H. J. Characterization of intracellular copper pools in rat hepatocytes using the chelator diamsar. Am J Physiol. 1997 Jun;272(6 Pt 1):G1400–G1407. doi: 10.1152/ajpgi.1997.272.6.G1400. [DOI] [PubMed] [Google Scholar]
- Bittel D., Dalton T., Samson S. L., Gedamu L., Andrews G. K. The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in vitro by zinc, but not by other transition metals. J Biol Chem. 1998 Mar 20;273(12):7127–7133. doi: 10.1074/jbc.273.12.7127. [DOI] [PubMed] [Google Scholar]
- Cano-Gauci D. F., Sarkar B. Reversible zinc exchange between metallothionein and the estrogen receptor zinc finger. FEBS Lett. 1996 May 13;386(1):1–4. doi: 10.1016/0014-5793(96)00356-0. [DOI] [PubMed] [Google Scholar]
- Coyle P., Philcox J. C., Carey L. C., Rofe A. M. Metallothionein: the multipurpose protein. Cell Mol Life Sci. 2002 Apr;59(4):627–647. doi: 10.1007/s00018-002-8454-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis S. R., Cousins R. J. Metallothionein expression in animals: a physiological perspective on function. J Nutr. 2000 May;130(5):1085–1088. doi: 10.1093/jn/130.5.1085. [DOI] [PubMed] [Google Scholar]
- Denizot F., Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986 May 22;89(2):271–277. doi: 10.1016/0022-1759(86)90368-6. [DOI] [PubMed] [Google Scholar]
- Freedman J. H., Ciriolo M. R., Peisach J. The role of glutathione in copper metabolism and toxicity. J Biol Chem. 1989 Apr 5;264(10):5598–5605. [PubMed] [Google Scholar]
- Freedman J. H., Weiner R. J., Peisach J. Resistance to copper toxicity of cultured hepatoma cells. Characterization of resistant cell lines. J Biol Chem. 1986 Sep 5;261(25):11840–11848. [PubMed] [Google Scholar]
- Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525. [DOI] [PubMed] [Google Scholar]
- Günes C., Heuchel R., Georgiev O., Müller K. H., Lichtlen P., Blüthmann H., Marino S., Aguzzi A., Schaffner W. Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. EMBO J. 1998 May 15;17(10):2846–2854. doi: 10.1093/emboj/17.10.2846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamer D. H. Metallothionein. Annu Rev Biochem. 1986;55:913–951. doi: 10.1146/annurev.bi.55.070186.004405. [DOI] [PubMed] [Google Scholar]
- Harrison M. D., Jones C. E., Solioz M., Dameron C. T. Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci. 2000 Jan;25(1):29–32. doi: 10.1016/s0968-0004(99)01492-9. [DOI] [PubMed] [Google Scholar]
- Jacob C., Maret W., Vallee B. L. Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3489–3494. doi: 10.1073/pnas.95.7.3489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanekiyo Masako, Itoh Norio, Kawasaki Atsuko, Matsuda Kimihiro, Nakanishi Tsuyoshi, Tanaka Keiichi. Metallothionein is required for zinc-induced expression of the macrophage colony stimulating factor gene. J Cell Biochem. 2002;86(1):145–153. doi: 10.1002/jcb.10202. [DOI] [PubMed] [Google Scholar]
- Kawai K., Liu S. X., Tyurin V. A., Tyurina Y. Y., Borisenko G. G., Jiang J. F., St Croix C. M., Fabisiak J. P., Pitt B. R., Kagan V. E. Antioxidant and antiapoptotic function of metallothioneins in HL-60 cells challenged with copper nitrilotriacetate. Chem Res Toxicol. 2000 Dec;13(12):1275–1286. doi: 10.1021/tx000119l. [DOI] [PubMed] [Google Scholar]
- Kelly E. J., Palmiter R. D. A murine model of Menkes disease reveals a physiological function of metallothionein. Nat Genet. 1996 Jun;13(2):219–222. doi: 10.1038/ng0696-219. [DOI] [PubMed] [Google Scholar]
- Kelly E. J., Quaife C. J., Froelick G. J., Palmiter R. D. Metallothionein I and II protect against zinc deficiency and zinc toxicity in mice. J Nutr. 1996 Jul;126(7):1782–1790. doi: 10.1093/jn/126.7.1782. [DOI] [PubMed] [Google Scholar]
- Kimura T., Oguro I., Kohroki J., Takehara M., Itoh N., Nakanishi T., Tanaka K. Metallothionein-null mice express altered genes during development. Biochem Biophys Res Commun. 2000 Apr 13;270(2):458–461. doi: 10.1006/bbrc.2000.2423. [DOI] [PubMed] [Google Scholar]
- Klaassen C. D., Liu J. Metallothionein transgenic and knock-out mouse models in the study of cadmium toxicity. J Toxicol Sci. 1998 Jul;23 (Suppl 2):97–102. doi: 10.2131/jts.23.supplementii_97. [DOI] [PubMed] [Google Scholar]
- LaBadie G. U., Beratis N. G., Price P. M., Hirschhorn K. Studies of the copper-binding proteins in Menkes and normal cultured skin fibroblast lysates. J Cell Physiol. 1981 Feb;106(2):173–178. doi: 10.1002/jcp.1041060202. [DOI] [PubMed] [Google Scholar]
- Liu J., Liu Y., Goyer R. A., Achanzar W., Waalkes M. P. Metallothionein-I/II null mice are more sensitive than wild-type mice to the hepatotoxic and nephrotoxic effects of chronic oral or injected inorganic arsenicals. Toxicol Sci. 2000 Jun;55(2):460–467. doi: 10.1093/toxsci/55.2.460. [DOI] [PubMed] [Google Scholar]
- Maret W., Larsen K. S., Vallee B. L. Coordination dynamics of biological zinc "clusters" in metallothioneins and in the DNA-binding domain of the transcription factor Gal4. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2233–2237. doi: 10.1073/pnas.94.6.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizzen C. A., Cartel N. J., Yu W. H., Fraser P. E., McLachlan D. R. Sensitive detection of metallothioneins-1, -2 and -3 in tissue homogenates by immunoblotting: a method for enhanced membrane transfer and retention. J Biochem Biophys Methods. 1996 May 14;32(2):77–83. doi: 10.1016/0165-022x(95)00044-r. [DOI] [PubMed] [Google Scholar]
- Murphy B. J., Andrews G. K., Bittel D., Discher D. J., McCue J., Green C. J., Yanovsky M., Giaccia A., Sutherland R. M., Laderoute K. R. Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res. 1999 Mar 15;59(6):1315–1322. [PubMed] [Google Scholar]
- Palmiter R. D. The elusive function of metallothioneins. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8428–8430. doi: 10.1073/pnas.95.15.8428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park J. D., Liu Y., Klaassen C. D. Protective effect of metallothionein against the toxicity of cadmium and other metals(1). Toxicology. 2001 Jun 21;163(2-3):93–100. doi: 10.1016/s0300-483x(01)00375-4. [DOI] [PubMed] [Google Scholar]
- Penkowa Milena, Poulsen Christian, Carrasco Javier, Hidalgo Juan. M-CSF deficiency leads to reduced metallothioneins I and II expression and increased tissue damage in the brain stem after 6-aminonicotinamide treatment. Exp Neurol. 2002 Aug;176(2):308–321. doi: 10.1006/exnr.2002.7968. [DOI] [PubMed] [Google Scholar]
- Petris Michael J., Smith Kathryn, Lee Jaekwon, Thiele Dennis J. Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem. 2002 Dec 25;278(11):9639–9646. doi: 10.1074/jbc.M209455200. [DOI] [PubMed] [Google Scholar]
- Qu Wei, Diwan Bhalchandra A., Liu Jie, Goyer Robert A., Dawson Tammy, Horton John L., Cherian M. George, Waalkes Michael P. The metallothionein-null phenotype is associated with heightened sensitivity to lead toxicity and an inability to form inclusion bodies. Am J Pathol. 2002 Mar;160(3):1047–1056. doi: 10.1016/S0002-9440(10)64925-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rae T. D., Schmidt P. J., Pufahl R. A., Culotta V. C., O'Halloran T. V. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science. 1999 Apr 30;284(5415):805–808. doi: 10.1126/science.284.5415.805. [DOI] [PubMed] [Google Scholar]
- Riordan J. R., Jolicoeur-Paquet L. Metallothionein accumulation may account for intracellular copper retention in Menkes' disease. J Biol Chem. 1982 Apr 25;257(8):4639–4645. [PubMed] [Google Scholar]
- Saito S., Kojima Y. Differential role of metallothionein on Zn, Cd and Cu accumulation in hepatic cytosol of rats. Cell Mol Life Sci. 1997 Mar;53(3):267–270. doi: 10.1007/PL00000602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schilsky M. L., Stockert R. J., Kesner A., Gorla G. R., Gagliardi G. S., Terada K., Miura N., Czaja M. J. Copper resistant human hepatoblastoma mutant cell lines without metallothionein induction overexpress ATP7B. Hepatology. 1998 Nov;28(5):1347–1356. doi: 10.1002/hep.510280525. [DOI] [PubMed] [Google Scholar]
- Schmitt R. C., Darwish H. M., Cheney J. C., Ettinger M. J. Copper transport kinetics by isolated rat hepatocytes. Am J Physiol. 1983 Feb;244(2):G183–G191. doi: 10.1152/ajpgi.1983.244.2.G183. [DOI] [PubMed] [Google Scholar]
- Shim Hoon, Harris Z. Leah. Genetic defects in copper metabolism. J Nutr. 2003 May;133(5 Suppl 1):1527S–1531S. doi: 10.1093/jn/133.5.1527S. [DOI] [PubMed] [Google Scholar]
- Sone T., Yamaoka K., Minami Y., Tsunoo H. Induction of metallothionein synthesis in Menkes' and normal lymphoblastoid cells is controlled by the level of intracellular copper. J Biol Chem. 1987 Apr 25;262(12):5878–5885. [PubMed] [Google Scholar]
- Steinebach O. M., Wolterbeek H. T. Effects of copper on rat hepatoma HTC cells and primary cultured rat hepatocytes. J Inorg Biochem. 1994 Jan;53(1):27–48. doi: 10.1016/0162-0134(94)80018-9. [DOI] [PubMed] [Google Scholar]
- Tapia Lucía, Suazo Miriam, Hödar Christian, Cambiazo Verónica, González Mauricio. Copper exposure modifies the content and distribution of trace metals in mammalian cultured cells. Biometals. 2003 Mar;16(1):169–174. doi: 10.1023/a:1020766932605. [DOI] [PubMed] [Google Scholar]
- Thiele D. J., Walling M. J., Hamer D. H. Mammalian metallothionein is functional in yeast. Science. 1986 Feb 21;231(4740):854–856. doi: 10.1126/science.3080806. [DOI] [PubMed] [Google Scholar]
- Tong K. K., McArdle H. J. Copper uptake by cultured trophoblast cells isolated from human term placenta. Biochim Biophys Acta. 1995 Nov 30;1269(3):233–236. doi: 10.1016/0167-4889(95)00123-6. [DOI] [PubMed] [Google Scholar]
- Trendelenburg George, Prass Konstantin, Priller Josef, Kapinya Krisztian, Polley Andreas, Muselmann Claudia, Ruscher Karsten, Kannbley Ute, Schmitt Armin O., Castell Stefanie. Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia. J Neurosci. 2002 Jul 15;22(14):5879–5888. doi: 10.1523/JNEUROSCI.22-14-05879.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uauy R., Olivares M., Gonzalez M. Essentiality of copper in humans. Am J Clin Nutr. 1998 May;67(5 Suppl):952S–959S. doi: 10.1093/ajcn/67.5.952S. [DOI] [PubMed] [Google Scholar]
- Waldrop G. L., Ettinger M. J. The relationship of excess copper accumulation by fibroblasts from the brindled mouse model of Menkes disease to the primary defect. Biochem J. 1990 Apr 15;267(2):417–422. doi: 10.1042/bj2670417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu W. Y., Melera P. W. Basal levels of metallothionein I and II expression in mouse embryo fibroblasts enhance growth in low folate through a cell cycle mediated pathway. Cell Biol Int. 2001;25(12):1261–1269. doi: 10.1006/cbir.2001.0811. [DOI] [PubMed] [Google Scholar]