Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 1;378(Pt 2):681–686. doi: 10.1042/BJ20031407

Comparative analysis of tandem C2 domains from the mammalian synaptotagmin family.

Colin Rickman 1, Molly Craxton 1, Shona Osborne 1, Bazbek Davletov 1
PMCID: PMC1223993  PMID: 14713287

Abstract

Intracellular membrane traffic is governed by a conserved set of proteins, including Syts (synaptotagmins). The mammalian Syt family includes 15 isoforms. Syts are membrane proteins that possess tandem C2 domains (C2AB) implicated in calcium-dependent phospholipid binding. We performed a pair-wise amino acid sequence comparison, together with functional studies of rat Syt C2ABs, to examine common and divergent properties within the mammalian family. Sequence analysis indicates three different C2AB classes, the members of which share a high degree of sequence similarity. All the other C2ABs are highly divergent in sequence. Nearly half of the Syt family does not exhibit calcium/phospholipid binding in comparison to Syt I, the major brain isoform. Syts do, however, possess a more conserved function, namely calcium-independent binding to target SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) heterodimers. All tested isoforms, except Syt XII and Syt XIII, bound the target SNARE heterodimer comprising syntaxin 1 and SNAP-25 (25 kDa synaptosome-associated protein). Our present study suggests that many Syt isoforms can function in membrane trafficking to interact with the target SNARE heterodimer on the pathway to calcium-triggered membrane fusion.

Full Text

The Full Text of this article is available as a PDF (464.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai J., Earles C. A., Lewis J. L., Chapman E. R. Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism. J Biol Chem. 2000 Aug 18;275(33):25427–25435. doi: 10.1074/jbc.M906729199. [DOI] [PubMed] [Google Scholar]
  2. Berton F., Cornet V., Iborra C., Garrido J., Dargent B., Fukuda M., Seagar M., Marquèze B. Synaptotagmin I and IV define distinct populations of neuronal transport vesicles. Eur J Neurosci. 2000 Apr;12(4):1294–1302. doi: 10.1046/j.1460-9568.2000.00013.x. [DOI] [PubMed] [Google Scholar]
  3. Blank P. S., Vogel S. S., Malley J. D., Zimmerberg J. A kinetic analysis of calcium-triggered exocytosis. J Gen Physiol. 2001 Aug;118(2):145–156. doi: 10.1085/jgp.118.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chapman E. R., Desai R. C., Davis A. F., Tornehl C. K. Delineation of the oligomerization, AP-2 binding, and synprint binding region of the C2B domain of synaptotagmin. J Biol Chem. 1998 Dec 4;273(49):32966–32972. doi: 10.1074/jbc.273.49.32966. [DOI] [PubMed] [Google Scholar]
  5. Chapman Edwin R. Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol. 2002 Jul;3(7):498–508. doi: 10.1038/nrm855. [DOI] [PubMed] [Google Scholar]
  6. Chen Y. A., Scheller R. H. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol. 2001 Feb;2(2):98–106. doi: 10.1038/35052017. [DOI] [PubMed] [Google Scholar]
  7. Chow R. H., Klingauf J., Neher E. Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12765–12769. doi: 10.1073/pnas.91.26.12765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Craxton M. Genomic analysis of synaptotagmin genes. Genomics. 2001 Sep;77(1-2):43–49. doi: 10.1006/geno.2001.6619. [DOI] [PubMed] [Google Scholar]
  9. Craxton M., Goedert M. Alternative splicing of synaptotagmins involving transmembrane exon skipping. FEBS Lett. 1999 Nov 5;460(3):417–422. doi: 10.1016/s0014-5793(99)01382-4. [DOI] [PubMed] [Google Scholar]
  10. Deutsch J. W., Kelly R. B. Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion. Biochemistry. 1981 Jan 20;20(2):378–385. doi: 10.1021/bi00505a024. [DOI] [PubMed] [Google Scholar]
  11. Fasshauer Dirk, Antonin Wolfram, Subramaniam Vinod, Jahn Reinhard. SNARE assembly and disassembly exhibit a pronounced hysteresis. Nat Struct Biol. 2002 Feb;9(2):144–151. doi: 10.1038/nsb750. [DOI] [PubMed] [Google Scholar]
  12. Ferguson G. D., Vician L., Herschman H. R. Synaptotagmin IV: biochemistry, genetics, behavior, and possible links to human psychiatric disease. Mol Neurobiol. 2001 Apr-Jun;23(2-3):173–185. doi: 10.1385/MN:23:2-3:173. [DOI] [PubMed] [Google Scholar]
  13. Fernandez I., Araç D., Ubach J., Gerber S. H., Shin O., Gao Y., Anderson R. G., Südhof T. C., Rizo J. Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron. 2001 Dec 20;32(6):1057–1069. doi: 10.1016/s0896-6273(01)00548-7. [DOI] [PubMed] [Google Scholar]
  14. Fernández-Chacón R., Königstorfer A., Gerber S. H., García J., Matos M. F., Stevens C. F., Brose N., Rizo J., Rosenmund C., Südhof T. C. Synaptotagmin I functions as a calcium regulator of release probability. Nature. 2001 Mar 1;410(6824):41–49. doi: 10.1038/35065004. [DOI] [PubMed] [Google Scholar]
  15. Fukuda M., Kojima T., Aruga J., Niinobe M., Mikoshiba K. Functional diversity of C2 domains of synaptotagmin family. Mutational analysis of inositol high polyphosphate binding domain. J Biol Chem. 1995 Nov 3;270(44):26523–26527. doi: 10.1074/jbc.270.44.26523. [DOI] [PubMed] [Google Scholar]
  16. Fukuda M., Mikoshiba K. Characterization of KIAA1427 protein as an atypical synaptotagmin (Syt XIII). Biochem J. 2001 Mar 1;354(Pt 2):249–257. doi: 10.1042/0264-6021:3540249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fukuda Mitsunori. Molecular cloning and characterization of human, rat, and mouse synaptotagmin XV. Biochem Biophys Res Commun. 2003 Jun 20;306(1):64–71. doi: 10.1016/s0006-291x(03)00911-2. [DOI] [PubMed] [Google Scholar]
  18. Fukuda Mitsunori. Molecular cloning, expression, and characterization of a novel class of synaptotagmin (Syt XIV) conserved from Drosophila to humans. J Biochem. 2003 May;133(5):641–649. doi: 10.1093/jb/mvg082. [DOI] [PubMed] [Google Scholar]
  19. Geppert M., Goda Y., Hammer R. E., Li C., Rosahl T. W., Stevens C. F., Südhof T. C. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell. 1994 Nov 18;79(4):717–727. doi: 10.1016/0092-8674(94)90556-8. [DOI] [PubMed] [Google Scholar]
  20. Hill W. G., Zeidel M. L. Reconstituting the barrier properties of a water-tight epithelial membrane by design of leaflet-specific liposomes. J Biol Chem. 2000 Sep 29;275(39):30176–30185. doi: 10.1074/jbc.M003494200. [DOI] [PubMed] [Google Scholar]
  21. Honda Atsuko, Yamada Mitsunori, Saisu Hideo, Takahashi Hitoshi, Mori Kazuhiro J., Abe Teruo. Direct, Ca2+-dependent interaction between tubulin and synaptotagmin I: a possible mechanism for attaching synaptic vesicles to microtubules. J Biol Chem. 2002 Mar 29;277(23):20234–20242. doi: 10.1074/jbc.M112080200. [DOI] [PubMed] [Google Scholar]
  22. Hu Kuang, Carroll Joe, Fedorovich Sergei, Rickman Colin, Sukhodub Andrei, Davletov Bazbek. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature. 2002 Feb 7;415(6872):646–650. doi: 10.1038/415646a. [DOI] [PubMed] [Google Scholar]
  23. Lagnado L., Gomis A., Job C. Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron. 1996 Nov;17(5):957–967. doi: 10.1016/s0896-6273(00)80226-3. [DOI] [PubMed] [Google Scholar]
  24. Li C., Davletov B. A., Südhof T. C. Distinct Ca2+ and Sr2+ binding properties of synaptotagmins. Definition of candidate Ca2+ sensors for the fast and slow components of neurotransmitter release. J Biol Chem. 1995 Oct 20;270(42):24898–24902. doi: 10.1074/jbc.270.42.24898. [DOI] [PubMed] [Google Scholar]
  25. Li C., Ullrich B., Zhang J. Z., Anderson R. G., Brose N., Südhof T. C. Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins. Nature. 1995 Jun 15;375(6532):594–599. doi: 10.1038/375594a0. [DOI] [PubMed] [Google Scholar]
  26. Littleton J. T., Stern M., Schulze K., Perin M., Bellen H. J. Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca(2+)-activated neurotransmitter release. Cell. 1993 Sep 24;74(6):1125–1134. doi: 10.1016/0092-8674(93)90733-7. [DOI] [PubMed] [Google Scholar]
  27. Mackler J. M., Drummond J. A., Loewen C. A., Robinson I. M., Reist N. E. The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature. 2002 Jul 7;418(6895):340–344. doi: 10.1038/nature00846. [DOI] [PubMed] [Google Scholar]
  28. Marquèze B., Berton F., Seagar M. Synaptotagmins in membrane traffic: which vesicles do the tagmins tag? Biochimie. 2000 May;82(5):409–420. doi: 10.1016/s0300-9084(00)00220-0. [DOI] [PubMed] [Google Scholar]
  29. McMahon H. T., Missler M., Li C., Südhof T. C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell. 1995 Oct 6;83(1):111–119. doi: 10.1016/0092-8674(95)90239-2. [DOI] [PubMed] [Google Scholar]
  30. Nakhost Arash, Houeland Gry, Castellucci Vincent F., Sossin Wayne S. Differential regulation of transmitter release by alternatively spliced forms of synaptotagmin I. J Neurosci. 2003 Jul 16;23(15):6238–6244. doi: 10.1523/JNEUROSCI.23-15-06238.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nalefski E. A., Falke J. J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 1996 Dec;5(12):2375–2390. doi: 10.1002/pro.5560051201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nalefski E. A., Wisner M. A., Chen J. Z., Sprang S. R., Fukuda M., Mikoshiba K., Falke J. J. C2 domains from different Ca2+ signaling pathways display functional and mechanistic diversity. Biochemistry. 2001 Mar 13;40(10):3089–3100. doi: 10.1021/bi001968a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Perin M. S., Brose N., Jahn R., Südhof T. C. Domain structure of synaptotagmin (p65) J Biol Chem. 1991 Jan 5;266(1):623–629. [PubMed] [Google Scholar]
  34. Perisic O., Fong S., Lynch D. E., Bycroft M., Williams R. L. Crystal structure of a calcium-phospholipid binding domain from cytosolic phospholipase A2. J Biol Chem. 1998 Jan 16;273(3):1596–1604. doi: 10.1074/jbc.273.3.1596. [DOI] [PubMed] [Google Scholar]
  35. Petrenko A. G., Perin M. S., Davletov B. A., Ushkaryov Y. A., Geppert M., Südhof T. C. Binding of synaptotagmin to the alpha-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature. 1991 Sep 5;353(6339):65–68. doi: 10.1038/353065a0. [DOI] [PubMed] [Google Scholar]
  36. Rickman Colin, Davletov Bazbek. Mechanism of calcium-independent synaptotagmin binding to target SNAREs. J Biol Chem. 2002 Dec 20;278(8):5501–5504. doi: 10.1074/jbc.C200692200. [DOI] [PubMed] [Google Scholar]
  37. Rizo J., Südhof T. C. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem. 1998 Jun 26;273(26):15879–15882. doi: 10.1074/jbc.273.26.15879. [DOI] [PubMed] [Google Scholar]
  38. Robinson Iain M., Ranjan Ravi, Schwarz Thomas L. Synaptotagmins I and IV promote transmitter release independently of Ca(2+) binding in the C(2)A domain. Nature. 2002 Jul 7;418(6895):336–340. doi: 10.1038/nature00915. [DOI] [PubMed] [Google Scholar]
  39. Schiavo G., Osborne S. L., Sgouros J. G. Synaptotagmins: more isoforms than functions? Biochem Biophys Res Commun. 1998 Jul 9;248(1):1–8. doi: 10.1006/bbrc.1998.8527. [DOI] [PubMed] [Google Scholar]
  40. Schneggenburger R., Neher E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature. 2000 Aug 24;406(6798):889–893. doi: 10.1038/35022702. [DOI] [PubMed] [Google Scholar]
  41. Shao X., Davletov B. A., Sutton R. B., Südhof T. C., Rizo J. Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science. 1996 Jul 12;273(5272):248–251. doi: 10.1126/science.273.5272.248. [DOI] [PubMed] [Google Scholar]
  42. Shin Ok-Ho, Rhee Jeong-Seop, Tang Jiong, Sugita Shuzo, Rosenmund Christian, Südhof Thomas C. Sr2+ binding to the Ca2+ binding site of the synaptotagmin 1 C2B domain triggers fast exocytosis without stimulating SNARE interactions. Neuron. 2003 Jan 9;37(1):99–108. doi: 10.1016/s0896-6273(02)01145-5. [DOI] [PubMed] [Google Scholar]
  43. Sugita S., Südhof T. C. Specificity of Ca2+-dependent protein interactions mediated by the C2A domains of synaptotagmins. Biochemistry. 2000 Mar 21;39(11):2940–2949. doi: 10.1021/bi9920984. [DOI] [PubMed] [Google Scholar]
  44. Sundermeier Thomas, Matthews Gary, Brink Peter R., Walcott Benjamin. Calcium dependence of exocytosis in lacrimal gland acinar cells. Am J Physiol Cell Physiol. 2002 Feb;282(2):C360–C365. doi: 10.1152/ajpcell.00298.2001. [DOI] [PubMed] [Google Scholar]
  45. Sutton R. B., Davletov B. A., Berghuis A. M., Südhof T. C., Sprang S. R. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell. 1995 Mar 24;80(6):929–938. doi: 10.1016/0092-8674(95)90296-1. [DOI] [PubMed] [Google Scholar]
  46. Sutton R. B., Ernst J. A., Brunger A. T. Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca(+2)-independent snare complex interaction. J Cell Biol. 1999 Nov 1;147(3):589–598. doi: 10.1083/jcb.147.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sutton R. B., Fasshauer D., Jahn R., Brunger A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature. 1998 Sep 24;395(6700):347–353. doi: 10.1038/26412. [DOI] [PubMed] [Google Scholar]
  48. Söllner T., Bennett M. K., Whiteheart S. W., Scheller R. H., Rothman J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993 Nov 5;75(3):409–418. doi: 10.1016/0092-8674(93)90376-2. [DOI] [PubMed] [Google Scholar]
  49. Südhof T. C., Rizo J. Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron. 1996 Sep;17(3):379–388. doi: 10.1016/s0896-6273(00)80171-3. [DOI] [PubMed] [Google Scholar]
  50. Südhof Thomas C. Synaptotagmins: why so many? J Biol Chem. 2001 Dec 5;277(10):7629–7632. doi: 10.1074/jbc.R100052200. [DOI] [PubMed] [Google Scholar]
  51. Tse F. W., Tse A., Hille B., Horstmann H., Almers W. Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs. Neuron. 1997 Jan;18(1):121–132. doi: 10.1016/s0896-6273(01)80051-9. [DOI] [PubMed] [Google Scholar]
  52. Tucker Ward C., Edwardson J. Michael, Bai Jihong, Kim Hyun-Jung, Martin Thomas F. J., Chapman Edwin R. Identification of synaptotagmin effectors via acute inhibition of secretion from cracked PC12 cells. J Cell Biol. 2003 Jul 14;162(2):199–209. doi: 10.1083/jcb.200302060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Ullrich B., Li C., Zhang J. Z., McMahon H., Anderson R. G., Geppert M., Südhof T. C. Functional properties of multiple synaptotagmins in brain. Neuron. 1994 Dec;13(6):1281–1291. doi: 10.1016/0896-6273(94)90415-4. [DOI] [PubMed] [Google Scholar]
  54. von Poser C., Ichtchenko K., Shao X., Rizo J., Südhof T. C. The evolutionary pressure to inactivate. A subclass of synaptotagmins with an amino acid substitution that abolishes Ca2+ binding. J Biol Chem. 1997 May 30;272(22):14314–14319. doi: 10.1074/jbc.272.22.14314. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES