Abstract
Smad4 is an essential signal transducer of the transforming growth factor beta (TGF-beta) signalling pathway and has been identified as a tumour suppressor, being mutated in approx. 50% of pancreatic cancers and approx. 15% of colorectal cancers. Two missense mutations in the C-terminal domain of Smad4, D351H (Asp351-->His) and D537Y (Asp537-->Tyr), have been described recently in the human colorectal cancer cell lines CACO-2 and SW948 respectively [Woodford-Richens, Rowan, Gorman, Halford, Bicknell, Wasan, Roylance, Bodmer and Tomlinson (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 9719-9723]. Previous work in vitro suggested that only Asp-351 was required for interaction with Smad2 [Wu, Fairman, Penry and Shi (2001) J. Biol. Chem. 276, 20688-20694]. In the present study, we investigate the functional consequences of these point mutations in vivo. We demonstrate that neither of these colorectal cancer cells undergo growth arrest in response to TGF-beta, which can be explained, at least in part, by their inability to up-regulate cyclin-dependent kinase inhibitors p21 (CIP1 ) or p15 ( INK4b) after TGF-beta stimulation. Although the point-mutated Smad4s are expressed at normal levels in these colorectal cancer cells, they cannot interact with either TGF-beta-induced phosphorylated Smad2 or Smad3. As a result, these Smad4 mutants do not accumulate in the nucleus after TGF-beta stimulation, are not recruited to DNA by relevant Smad-binding transcription factors and cannot generate transcriptionally active DNA-bound complexes. Therefore both these colorectal tumour cells completely lack functional Smad4 activity owing to the missense mutations. Given the location of these mutations in the three-dimensional structure of the Smad4 C-terminal domain, the results also give us significant insights into Smad complex formation.
Full Text
The Full Text of this article is available as a PDF (281.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angel P., Baumann I., Stein B., Delius H., Rahmsdorf H. J., Herrlich P. 12-O-tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5'-flanking region. Mol Cell Biol. 1987 Jun;7(6):2256–2266. doi: 10.1128/mcb.7.6.2256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bardwell V. J., Treisman R. The POZ domain: a conserved protein-protein interaction motif. Genes Dev. 1994 Jul 15;8(14):1664–1677. doi: 10.1101/gad.8.14.1664. [DOI] [PubMed] [Google Scholar]
- Chen X., Rubock M. J., Whitman M. A transcriptional partner for MAD proteins in TGF-beta signalling. Nature. 1996 Oct 24;383(6602):691–696. doi: 10.1038/383691a0. [DOI] [PubMed] [Google Scholar]
- Dai J. L., Schutte M., Bansal R. K., Wilentz R. E., Sugar A. Y., Kern S. E. Transforming growth factor-beta responsiveness in DPC4/SMAD4-null cancer cells. Mol Carcinog. 1999 Sep;26(1):37–43. doi: 10.1002/(sici)1098-2744(199909)26:1<37::aid-mc5>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
- Datto M. B., Yu Y., Wang X. F. Functional analysis of the transforming growth factor beta responsive elements in the WAF1/Cip1/p21 promoter. J Biol Chem. 1995 Dec 1;270(48):28623–28628. doi: 10.1074/jbc.270.48.28623. [DOI] [PubMed] [Google Scholar]
- Dennler S., Itoh S., Vivien D., ten Dijke P., Huet S., Gauthier J. M. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998 Jun 1;17(11):3091–3100. doi: 10.1093/emboj/17.11.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Derynck R., Akhurst R. J., Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001 Oct;29(2):117–129. doi: 10.1038/ng1001-117. [DOI] [PubMed] [Google Scholar]
- Faure S., Lee M. A., Keller T., ten Dijke P., Whitman M. Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development. 2000 Jul;127(13):2917–2931. doi: 10.1242/dev.127.13.2917. [DOI] [PubMed] [Google Scholar]
- Fink S. P., Swinler S. E., Lutterbaugh J. D., Massagué J., Thiagalingam S., Kinzler K. W., Vogelstein B., Willson J. K., Markowitz S. Transforming growth factor-beta-induced growth inhibition in a Smad4 mutant colon adenoma cell line. Cancer Res. 2001 Jan 1;61(1):256–260. [PubMed] [Google Scholar]
- Germain S., Howell M., Esslemont G. M., Hill C. S. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 2000 Feb 15;14(4):435–451. [PMC free article] [PubMed] [Google Scholar]
- Hahn S. A., Schutte M., Hoque A. T., Moskaluk C. A., da Costa L. T., Rozenblum E., Weinstein C. L., Fischer A., Yeo C. J., Hruban R. H. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996 Jan 19;271(5247):350–353. doi: 10.1126/science.271.5247.350. [DOI] [PubMed] [Google Scholar]
- Hannon G. J., Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature. 1994 Sep 15;371(6494):257–261. doi: 10.1038/371257a0. [DOI] [PubMed] [Google Scholar]
- Inman Gareth J., Hill Caroline S. Stoichiometry of active smad-transcription factor complexes on DNA. J Biol Chem. 2002 Oct 8;277(52):51008–51016. doi: 10.1074/jbc.M208532200. [DOI] [PubMed] [Google Scholar]
- Inman Gareth J., Nicolás Francisco J., Hill Caroline S. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell. 2002 Aug;10(2):283–294. doi: 10.1016/s1097-2765(02)00585-3. [DOI] [PubMed] [Google Scholar]
- Kim S. J., Angel P., Lafyatis R., Hattori K., Kim K. Y., Sporn M. B., Karin M., Roberts A. B. Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complex. Mol Cell Biol. 1990 Apr;10(4):1492–1497. doi: 10.1128/mcb.10.4.1492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
- Liu F., Pouponnot C., Massagué J. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev. 1997 Dec 1;11(23):3157–3167. doi: 10.1101/gad.11.23.3157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massagué J., Blain S. W., Lo R. S. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000 Oct 13;103(2):295–309. doi: 10.1016/s0092-8674(00)00121-5. [DOI] [PubMed] [Google Scholar]
- Massagué J., Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000 Apr 17;19(8):1745–1754. doi: 10.1093/emboj/19.8.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maurice D., Pierreux C. E., Howell M., Wilentz R. E., Owen M. J., Hill C. S. Loss of Smad4 function in pancreatic tumors: C-terminal truncation leads to decreased stability. J Biol Chem. 2001 Sep 11;276(46):43175–43181. doi: 10.1074/jbc.M105895200. [DOI] [PubMed] [Google Scholar]
- Morén A., Itoh S., Moustakas A., Dijke P., Heldin C. H. Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4. Oncogene. 2000 Sep 7;19(38):4396–4404. doi: 10.1038/sj.onc.1203798. [DOI] [PubMed] [Google Scholar]
- Müller Nicole, Reinacher-Schick Anke, Baldus Stephan, van Hengel Jolanda, Berx Geert, Baar Anke, van Roy Frans, Schmiegel Wolff, Schwarte-Waldhoff Irmgard. Smad4 induces the tumor suppressor E-cadherin and P-cadherin in colon carcinoma cells. Oncogene. 2002 Sep 5;21(39):6049–6058. doi: 10.1038/sj.onc.1205766. [DOI] [PubMed] [Google Scholar]
- Nakao A., Imamura T., Souchelnytskyi S., Kawabata M., Ishisaki A., Oeda E., Tamaki K., Hanai J., Heldin C. H., Miyazono K. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 1997 Sep 1;16(17):5353–5362. doi: 10.1093/emboj/16.17.5353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolás Francisco J., Hill Caroline S. Attenuation of the TGF-beta-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-beta-induced growth arrest. Oncogene. 2003 Jun 12;22(24):3698–3711. doi: 10.1038/sj.onc.1206420. [DOI] [PubMed] [Google Scholar]
- Nicolás Francisco J., Lehmann Kerstin, Warne Patricia H., Hill Caroline S., Downward Julian. Epithelial to mesenchymal transition in Madin-Darby canine kidney cells is accompanied by down-regulation of Smad3 expression, leading to resistance to transforming growth factor-beta-induced growth arrest. J Biol Chem. 2002 Nov 14;278(5):3251–3256. doi: 10.1074/jbc.M209019200. [DOI] [PubMed] [Google Scholar]
- Pertovaara L., Sistonen L., Bos T. J., Vogt P. K., Keski-Oja J., Alitalo K. Enhanced jun gene expression is an early genomic response to transforming growth factor beta stimulation. Mol Cell Biol. 1989 Mar;9(3):1255–1262. doi: 10.1128/mcb.9.3.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pierreux C. E., Nicolás F. J., Hill C. S. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol Cell Biol. 2000 Dec;20(23):9041–9054. doi: 10.1128/mcb.20.23.9041-9054.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynisdóttir I., Polyak K., Iavarone A., Massagué J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev. 1995 Aug 1;9(15):1831–1845. doi: 10.1101/gad.9.15.1831. [DOI] [PubMed] [Google Scholar]
- Schutte M., Hruban R. H., Hedrick L., Cho K. R., Nadasdy G. M., Weinstein C. L., Bova G. S., Isaacs W. B., Cairns P., Nawroz H. DPC4 gene in various tumor types. Cancer Res. 1996 Jun 1;56(11):2527–2530. [PubMed] [Google Scholar]
- Schwarte-Waldhoff I., Volpert O. V., Bouck N. P., Sipos B., Hahn S. A., Klein-Scory S., Lüttges J., Klöppel G., Graeven U., Eilert-Micus C. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9624–9629. doi: 10.1073/pnas.97.17.9624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi Y., Hata A., Lo R. S., Massagué J., Pavletich N. P. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature. 1997 Jul 3;388(6637):87–93. doi: 10.1038/40431. [DOI] [PubMed] [Google Scholar]
- Wakefield Lalage M., Roberts Anita B. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 2002 Feb;12(1):22–29. doi: 10.1016/s0959-437x(01)00259-3. [DOI] [PubMed] [Google Scholar]
- Watanabe M., Masuyama N., Fukuda M., Nishida E. Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep. 2000 Aug;1(2):176–182. doi: 10.1093/embo-reports/kvd029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wisotzkey R. G., Mehra A., Sutherland D. J., Dobens L. L., Liu X., Dohrmann C., Attisano L., Raftery L. A. Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses. Development. 1998 Apr;125(8):1433–1445. doi: 10.1242/dev.125.8.1433. [DOI] [PubMed] [Google Scholar]
- Wong C., Rougier-Chapman E. M., Frederick J. P., Datto M. B., Liberati N. T., Li J. M., Wang X. F. Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. Mol Cell Biol. 1999 Mar;19(3):1821–1830. doi: 10.1128/mcb.19.3.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodford-Richens K. L., Rowan A. J., Gorman P., Halford S., Bicknell D. C., Wasan H. S., Roylance R. R., Bodmer W. F., Tomlinson I. P. SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway. Proc Natl Acad Sci U S A. 2001 Jul 31;98(17):9719–9723. doi: 10.1073/pnas.171321498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu J. W., Fairman R., Penry J., Shi Y. Formation of a stable heterodimer between Smad2 and Smad4. J Biol Chem. 2001 Mar 27;276(23):20688–20694. doi: 10.1074/jbc.M100174200. [DOI] [PubMed] [Google Scholar]
- Wu J. W., Hu M., Chai J., Seoane J., Huse M., Li C., Rigotti D. J., Kyin S., Muir T. W., Fairman R. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell. 2001 Dec;8(6):1277–1289. doi: 10.1016/s1097-2765(01)00421-x. [DOI] [PubMed] [Google Scholar]
- Xiao Zhan, Latek Robert, Lodish Harvey F. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity. Oncogene. 2003 Feb 20;22(7):1057–1069. doi: 10.1038/sj.onc.1206212. [DOI] [PubMed] [Google Scholar]
- Xu J., Attisano L. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4820–4825. doi: 10.1073/pnas.97.9.4820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu Lan, Kang Yibin, Cöl Seda, Massagué Joan. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus. Mol Cell. 2002 Aug;10(2):271–282. doi: 10.1016/s1097-2765(02)00586-5. [DOI] [PubMed] [Google Scholar]
- Yeo C. Y., Chen X., Whitman M. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis. J Biol Chem. 1999 Sep 10;274(37):26584–26590. doi: 10.1074/jbc.274.37.26584. [DOI] [PubMed] [Google Scholar]