Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 15;379(Pt 2):359–366. doi: 10.1042/BJ20031758

Mechanisms of the interaction of nitroxyl with mitochondria.

Sruti Shiva 1, Jack H Crawford 1, Anup Ramachandran 1, Erin K Ceaser 1, Tess Hillson 1, Paul S Brookes 1, Rakesh P Patel 1, Victor M Darley-Usmar 1
PMCID: PMC1224084  PMID: 14723605

Abstract

It is now thought that NO* (nitric oxide) and its redox congeners may play a role in the physiological regulation of mitochondrial function. The inhibition of cytochrome c oxidase by NO* is characterized as being reversible and oxygen dependent. In contrast, peroxynitrite, the product of the reaction of NO* with superoxide, irreversibly inhibits several of the respiratory complexes. However, little is known about the effects of HNO (nitroxyl) on mitochondrial function. This is especially important, since HNO has been shown to be more cytotoxic than NO*, may potentially be generated in vivo, and elicits biological responses with some of the characteristics of NO and peroxynitrite. In the present study, we present evidence that isolated mitochondria, in the absence or presence of substrate, convert HNO into NO* by a process that is dependent on mitochondrial concentration as well as the concentration of the HNO donor Angeli's salt. In addition, HNO is able to inhibit mitochondrial respiration through the inhibition of complexes I and II, most probably via modification of specific cysteine residues in the proteins. Using a proteomics approach, extensive modification of mitochondrial protein thiols was demonstrated. From these data it is evident that HNO interacts with mitochondria through mechanisms distinct from those of either NO* or peroxynitrite, including the generation of NO*, the modification of thiols and the inhibition of complexes I and II.

Full Text

The Full Text of this article is available as a PDF (211.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adak S., Wang Q., Stuehr D. J. Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase. Implications for mechanism. J Biol Chem. 2000 Oct 27;275(43):33554–33561. doi: 10.1074/jbc.M004337200. [DOI] [PubMed] [Google Scholar]
  2. Arnelle D. R., Stamler J. S. NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys. 1995 Apr 20;318(2):279–285. doi: 10.1006/abbi.1995.1231. [DOI] [PubMed] [Google Scholar]
  3. Bartberger M. D., Fukuto J. M., Houk K. N. On the acidity and reactivity of HNO in aqueous solution and biological systems. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2194–2198. doi: 10.1073/pnas.041481598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bartberger Michael D., Liu Wei, Ford Eleonora, Miranda Katrina M., Switzer Christopher, Fukuto Jon M., Farmer Patrick J., Wink David A., Houk Kendall N. The reduction potential of nitric oxide (NO) and its importance to NO biochemistry. Proc Natl Acad Sci U S A. 2002 Aug 12;99(17):10958–10963. doi: 10.1073/pnas.162095599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brennan Peter A., Moncada Salvador. From pollutant gas to biological messenger: the diverse actions of nitric oxide in cancer. Ann R Coll Surg Engl. 2002 Mar;84(2):75–78. [PMC free article] [PubMed] [Google Scholar]
  7. Brookes Paul S., Shiva Sruti, Patel Rakesh P., Darley-Usmar Victor M. Measurement of mitochondrial respiratory thresholds and the control of respiration by nitric oxide. Methods Enzymol. 2002;359:305–319. doi: 10.1016/s0076-6879(02)59194-1. [DOI] [PubMed] [Google Scholar]
  8. Brown G. C., Cooper C. E. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994 Dec 19;356(2-3):295–298. doi: 10.1016/0014-5793(94)01290-3. [DOI] [PubMed] [Google Scholar]
  9. Buyukafsar K., Nelli S., Martin W. Formation of nitric oxide from nitroxyl anion: role of quinones and ferricytochrome c. Br J Pharmacol. 2001 Jan;132(1):165–172. doi: 10.1038/sj.bjp.0703812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cadenas E., Davies K. J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000 Aug;29(3-4):222–230. doi: 10.1016/s0891-5849(00)00317-8. [DOI] [PubMed] [Google Scholar]
  11. Cassina A., Radi R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys. 1996 Apr 15;328(2):309–316. doi: 10.1006/abbi.1996.0178. [DOI] [PubMed] [Google Scholar]
  12. Cleeter M. W., Cooper J. M., Darley-Usmar V. M., Moncada S., Schapira A. H. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 1994 May 23;345(1):50–54. doi: 10.1016/0014-5793(94)00424-2. [DOI] [PubMed] [Google Scholar]
  13. Cook Natalie M., Shinyashiki Masaru, Jackson Matthew I., Leal Felipe A., Fukuto Jon M. Nitroxyl-mediated disruption of thiol proteins: inhibition of the yeast transcription factor Ace1. Arch Biochem Biophys. 2003 Feb 1;410(1):89–95. doi: 10.1016/s0003-9861(02)00656-2. [DOI] [PubMed] [Google Scholar]
  14. Cooper Chris E. Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem Sci. 2002 Jan;27(1):33–39. doi: 10.1016/s0968-0004(01)02035-7. [DOI] [PubMed] [Google Scholar]
  15. Cooper Chris E., Patel Rakesh P., Brookes Paul S., Darley-Usmar Victor M. Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species. Trends Biochem Sci. 2002 Oct;27(10):489–492. doi: 10.1016/s0968-0004(02)02191-6. [DOI] [PubMed] [Google Scholar]
  16. Dawn Buddhadeb, Bolli Roberto. Role of nitric oxide in myocardial preconditioning. Ann N Y Acad Sci. 2002 May;962:18–41. doi: 10.1111/j.1749-6632.2002.tb04053.x. [DOI] [PubMed] [Google Scholar]
  17. Hederstedt Lars. Structural biology. Complex II is complex too. Science. 2003 Jan 31;299(5607):671–672. doi: 10.1126/science.1081821. [DOI] [PubMed] [Google Scholar]
  18. Hogg Neil. The biochemistry and physiology of S-nitrosothiols. Annu Rev Pharmacol Toxicol. 2002;42:585–600. doi: 10.1146/annurev.pharmtox.42.092501.104328. [DOI] [PubMed] [Google Scholar]
  19. Hrabie Joseph A., Keefer Larry K. Chemistry of the nitric oxide-releasing diazeniumdiolate ("nitrosohydroxylamine") functional group and its oxygen-substituted derivatives. Chem Rev. 2002 Apr;102(4):1135–1154. doi: 10.1021/cr000028t. [DOI] [PubMed] [Google Scholar]
  20. Hughes M. N., Cammack R. Synthesis, chemistry, and applications of nitroxyl ion releasers sodium trioxodinitrate or Angeli's salt and Piloty's acid. Methods Enzymol. 1999;301:279–287. doi: 10.1016/s0076-6879(99)01092-7. [DOI] [PubMed] [Google Scholar]
  21. Ivanova Juliana, Salama Guy, Clancy Robert M., Schor Nina F., Nylander Karen D., Stoyanovsky Detcho A. Formation of nitroxyl and hydroxyl radical in solutions of sodium trioxodinitrate: effects of pH and cytotoxicity. J Biol Chem. 2003 Aug 14;278(44):42761–42768. doi: 10.1074/jbc.M305544200. [DOI] [PubMed] [Google Scholar]
  22. Kenney W. C. The reaction of N-ethylmaleimide at the active site of succinate dehydrogenase. J Biol Chem. 1975 Apr 25;250(8):3089–3094. [PubMed] [Google Scholar]
  23. King S. Bruce. The nitric oxide producing reactions of hydroxyurea. Curr Med Chem. 2003 Mar;10(6):437–452. doi: 10.2174/0929867033368213. [DOI] [PubMed] [Google Scholar]
  24. Koppenol W. H., Moreno J. J., Pryor W. A., Ischiropoulos H., Beckman J. S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol. 1992 Nov-Dec;5(6):834–842. doi: 10.1021/tx00030a017. [DOI] [PubMed] [Google Scholar]
  25. Ma X. L., Gao F., Liu G. L., Lopez B. L., Christopher T. A., Fukuto J. M., Wink D. A., Feelisch M. Opposite effects of nitric oxide and nitroxyl on postischemic myocardial injury. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14617–14622. doi: 10.1073/pnas.96.25.14617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MacMillan-Crow L. A., Cruthirds D. L., Ahki K. M., Sanders P. W., Thompson J. A. Mitochondrial tyrosine nitration precedes chronic allograft nephropathy. Free Radic Biol Med. 2001 Dec 15;31(12):1603–1608. doi: 10.1016/s0891-5849(01)00750-x. [DOI] [PubMed] [Google Scholar]
  27. Miranda Katrina M., Paolocci Nazareno, Katori Tatsuo, Thomas Douglas D., Ford Eleonora, Bartberger Michael D., Espey Michael G., Kass David A., Feelisch Martin, Fukuto Jon M. A biochemical rationale for the discrete behavior of nitroxyl and nitric oxide in the cardiovascular system. Proc Natl Acad Sci U S A. 2003 Jul 15;100(16):9196–9201. doi: 10.1073/pnas.1430507100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Paddenberg Renate, Ishaq Barat, Goldenberg Anna, Faulhammer Petra, Rose Frank, Weissmann Norbert, Braun-Dullaeus Ruediger C., Kummer Wolfgang. Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol. 2003 Jan 10;284(5):L710–L719. doi: 10.1152/ajplung.00149.2002. [DOI] [PubMed] [Google Scholar]
  29. Pagliaro Pasquale, Mancardi Daniele, Rastaldo Raffaella, Penna Claudia, Gattullo Donatella, Miranda Katrina M., Feelisch Martin, Wink David A., Kass David A., Paolocci Nazareno. Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radic Biol Med. 2003 Jan 1;34(1):33–43. doi: 10.1016/s0891-5849(02)01179-6. [DOI] [PubMed] [Google Scholar]
  30. Paolocci Nazareno, Katori Tatsuo, Champion Hunter C., St John Marcus E., Miranda Katrina M., Fukuto Jon M., Wink David A., Kass David A. Positive inotropic and lusitropic effects of HNO/NO- in failing hearts: independence from beta-adrenergic signaling. Proc Natl Acad Sci U S A. 2003 Apr 18;100(9):5537–5542. doi: 10.1073/pnas.0937302100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Radi Rafael, Cassina Adriana, Hodara Roberto. Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem. 2002 Mar-Apr;383(3-4):401–409. doi: 10.1515/BC.2002.044. [DOI] [PubMed] [Google Scholar]
  32. Ramachandran Anup, Levonen Anna-Liisa, Brookes Paul S., Ceaser Erin, Shiva Sruti, Barone Maria Cecilia, Darley-Usmar Victor. Mitochondria, nitric oxide, and cardiovascular dysfunction. Free Radic Biol Med. 2002 Dec 1;33(11):1465–1474. doi: 10.1016/s0891-5849(02)01142-5. [DOI] [PubMed] [Google Scholar]
  33. Schapira A. H. Mitochondrial dysfunction in neurodegenerative disorders. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):225–233. doi: 10.1016/s0005-2728(98)00115-7. [DOI] [PubMed] [Google Scholar]
  34. Senoo-Matsuda Nanami, Hartman Philip S., Akatsuka Akira, Yoshimura Shinichi, Ishii Naoaki. A complex II defect affects mitochondrial structure, leading to ced-3- and ced-4-dependent apoptosis and aging. J Biol Chem. 2003 Apr 2;278(24):22031–22036. doi: 10.1074/jbc.M211377200. [DOI] [PubMed] [Google Scholar]
  35. Shafirovich Vladimir, Lymar Sergei V. Nitroxyl and its anion in aqueous solutions: spin states, protic equilibria, and reactivities toward oxygen and nitric oxide. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7340–7345. doi: 10.1073/pnas.112202099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sharpe M. A., Cooper C. E. Reactions of nitric oxide with mitochondrial cytochrome c: a novel mechanism for the formation of nitroxyl anion and peroxynitrite. Biochem J. 1998 May 15;332(Pt 1):9–19. doi: 10.1042/bj3320009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shiva S., Brookes P. S., Patel R. P., Anderson P. G., Darley-Usmar V. M. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7212–7217. doi: 10.1073/pnas.131128898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stamler J. S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 1994 Sep 23;78(6):931–936. doi: 10.1016/0092-8674(94)90269-0. [DOI] [PubMed] [Google Scholar]
  39. Taylor Ellen R., Hurrell Fiona, Shannon Richard J., Lin Tsu-Kung, Hirst Judy, Murphy Michael P. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem. 2003 Mar 20;278(22):19603–19610. doi: 10.1074/jbc.M209359200. [DOI] [PubMed] [Google Scholar]
  40. Venkatraman Aparna, Shiva Sruti, Davis Ashley J., Bailey Shannon M., Brookes Paul S., Darley-Usmar Victor M. Chronic alcohol consumption increases the sensitivity of rat liver mitochondrial respiration to inhibition by nitric oxide. Hepatology. 2003 Jul;38(1):141–147. doi: 10.1053/jhep.2003.50293. [DOI] [PubMed] [Google Scholar]
  41. Wink D. A., Feelisch M., Fukuto J., Chistodoulou D., Jourd'heuil D., Grisham M. B., Vodovotz Y., Cook J. A., Krishna M., DeGraff W. G. The cytotoxicity of nitroxyl: possible implications for the pathophysiological role of NO. Arch Biochem Biophys. 1998 Mar 1;351(1):66–74. doi: 10.1006/abbi.1997.0565. [DOI] [PubMed] [Google Scholar]
  42. Wink David A., Miranda Katrina M., Katori Tatsuo, Mancardi Daniele, Thomas Douglas D., Ridnour Lisa, Espey Michael G., Feelisch Martin, Colton Carol A., Fukuto Jon M. Orthogonal properties of the redox siblings nitroxyl and nitric oxide in the cardiovascular system: a novel redox paradigm. Am J Physiol Heart Circ Physiol. 2003 Jul 10;285(6):H2264–H2276. doi: 10.1152/ajpheart.00531.2003. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES