Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 15;379(Pt 2):395–408. doi: 10.1042/BJ20031797

14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking.

Mercedes Pozuelo Rubio 1, Kathryn M Geraghty 1, Barry H C Wong 1, Nicola T Wood 1, David G Campbell 1, Nick Morrice 1, Carol Mackintosh 1
PMCID: PMC1224091  PMID: 14744259

Abstract

14-3-3-interacting proteins were isolated from extracts of proliferating HeLa cells using 14-3-3 affinity chromatography, eluting with a phosphopeptide that competes with targets for 14-3-3 binding. The isolated proteins did not bind to 14-3-3 proteins (14-3-3s) after dephosphorylation with protein phosphatase 2A (PP2A), indicating that binding to 14-3-3s requires their phosphorylation. The binding proteins identified by tryptic mass fingerprinting and Western blotting include many enzymes involved in generating precursors such as purines (AMP, GMP and ATP), FAD, NADPH, cysteine and S-adenosylmethionine, which are needed for cell growth, regulators of cell proliferation, including enzymes of DNA replication, proteins of anti-oxidative metabolism, regulators of actin dynamics and cellular trafficking, and proteins whose deregulation has been implicated in cancers, diabetes, Parkinsonism and other neurological diseases. Several proteins bound to 14-3-3-Sepharose in extracts of proliferating cells, but not in non-proliferating, serum-starved cells, including a novel microtubule-interacting protein ELP95 (EMAP-like protein of 95 kDa) and a small HVA22/Yop1p-related protein. In contrast, the interactions of 14-3-3s with the N-methyl-D-aspartate receptor 2A subunit and NuMA (nuclear mitotic apparatus protein) were not regulated by serum. Overall, our findings suggest that 14-3-3s may be central to integrating the regulation of biosynthetic metabolism, cell proliferation, survival, and other processes in human cells.

Full Text

The Full Text of this article is available as a PDF (323.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews R. K., Harris S. J., McNally T., Berndt M. C. Binding of purified 14-3-3 zeta signaling protein to discrete amino acid sequences within the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX-V complex. Biochemistry. 1998 Jan 13;37(2):638–647. doi: 10.1021/bi970893g. [DOI] [PubMed] [Google Scholar]
  2. Basu Subham, Totty Nicholas F., Irwin Meredith S., Sudol Marius, Downward Julian. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell. 2003 Jan;11(1):11–23. doi: 10.1016/s1097-2765(02)00776-1. [DOI] [PubMed] [Google Scholar]
  3. Berg Daniela, Holzmann Carsten, Riess Olaf. 14-3-3 proteins in the nervous system. Nat Rev Neurosci. 2003 Sep;4(9):752–762. doi: 10.1038/nrn1197. [DOI] [PubMed] [Google Scholar]
  4. Birkenfeld Jörg, Betz Heinrich, Roth Dagmar. Identification of cofilin and LIM-domain-containing protein kinase 1 as novel interaction partners of 14-3-3 zeta. Biochem J. 2003 Jan 1;369(Pt 1):45–54. doi: 10.1042/BJ20021152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonifati Vincenzo, Rizzu Patrizia, van Baren Marijke J., Schaap Onno, Breedveld Guido J., Krieger Elmar, Dekker Marieke C. J., Squitieri Ferdinando, Ibanez Pablo, Joosse Marijke. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2002 Nov 21;299(5604):256–259. doi: 10.1126/science.1077209. [DOI] [PubMed] [Google Scholar]
  6. Brands Alex, Ho Tuan-hua David. Function of a plant stress-induced gene, HVA22. Synthetic enhancement screen with its yeast homolog reveals its role in vesicular traffic. Plant Physiol. 2002 Nov;130(3):1121–1131. doi: 10.1104/pp.007716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bunney T. D., van Walraven H. S., de Boer A. H. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proc Natl Acad Sci U S A. 2001 Mar 13;98(7):4249–4254. doi: 10.1073/pnas.061437498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carim L., Sumoy L., Andreu N., Estivill X., Escarceller M. Cloning, mapping and expression analysis of VPS33B, the human orthologue of rat Vps33b. Cytogenet Cell Genet. 2000;89(1-2):92–95. doi: 10.1159/000015571. [DOI] [PubMed] [Google Scholar]
  9. Chesney J., Mitchell R., Benigni F., Bacher M., Spiegel L., Al-Abed Y., Han J. H., Metz C., Bucala R. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3047–3052. doi: 10.1073/pnas.96.6.3047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Christopherson Richard I., Lyons Stephen D., Wilson Paul K. Inhibitors of de novo nucleotide biosynthesis as drugs. Acc Chem Res. 2002 Nov;35(11):961–971. doi: 10.1021/ar0000509. [DOI] [PubMed] [Google Scholar]
  11. Danial Nika N., Gramm Colette F., Scorrano Luca, Zhang Chen-Yu, Krauss Stefan, Ranger Ann M., Datta Sandeep Robert, Greenberg Michael E., Licklider Lawrence J., Lowell Bradford B. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature. 2003 Aug 21;424(6951):952–956. doi: 10.1038/nature01825. [DOI] [PubMed] [Google Scholar]
  12. Delpierre Ghislain, Collard François, Fortpied Juliette, Van Schaftingen Emile. Fructosamine 3-kinase is involved in an intracellular deglycation pathway in human erythrocytes. Biochem J. 2002 Aug 1;365(Pt 3):801–808. doi: 10.1042/BJ20020325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eichenmuller Bernd, Everley Patrick, Palange Jean, Lepley Denise, Suprenant Kathy A. The human EMAP-like protein-70 (ELP70) is a microtubule destabilizer that localizes to the mitotic apparatus. J Biol Chem. 2001 Nov 2;277(2):1301–1309. doi: 10.1074/jbc.M106628200. [DOI] [PubMed] [Google Scholar]
  14. Fountoulakis M., Cairns N., Lubec G. Increased levels of 14-3-3 gamma and epsilon proteins in brain of patients with Alzheimer's disease and Down syndrome. J Neural Transm Suppl. 1999;57:323–335. doi: 10.1007/978-3-7091-6380-1_23. [DOI] [PubMed] [Google Scholar]
  15. Fuglsang Anja T., Borch Jonas, Bych Katrine, Jahn Thomas P., Roepstorff Peter, Palmgren Michael G. The binding site for regulatory 14-3-3 protein in plant plasma membrane H+-ATPase: involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end. J Biol Chem. 2003 Jul 29;278(43):42266–42272. doi: 10.1074/jbc.M306707200. [DOI] [PubMed] [Google Scholar]
  16. Gelperin D., Weigle J., Nelson K., Roseboom P., Irie K., Matsumoto K., Lemmon S. 14-3-3 proteins: potential roles in vesicular transport and Ras signaling in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11539–11543. doi: 10.1073/pnas.92.25.11539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gilfix Brian M. Hyperhomocysteinemia: genetic determinants and selected mouse models. Clin Invest Med. 2003 Jun;26(3):121–132. [PubMed] [Google Scholar]
  18. Gohla Antje, Bokoch Gary M. 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr Biol. 2002 Oct 1;12(19):1704–1710. doi: 10.1016/s0960-9822(02)01184-3. [DOI] [PubMed] [Google Scholar]
  19. Gottlob K., Majewski N., Kennedy S., Kandel E., Robey R. B., Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001 Jun 1;15(11):1406–1418. doi: 10.1101/gad.889901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grozinger C. M., Schreiber S. L. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7835–7840. doi: 10.1073/pnas.140199597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Haren Laurence, Merdes Andreas. Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules. J Cell Sci. 2002 May 1;115(Pt 9):1815–1824. doi: 10.1242/jcs.115.9.1815. [DOI] [PubMed] [Google Scholar]
  22. Hsu H., Huang J., Shu H. B., Baichwal V., Goeddel D. V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity. 1996 Apr;4(4):387–396. doi: 10.1016/s1074-7613(00)80252-6. [DOI] [PubMed] [Google Scholar]
  23. Hur Gang Min, Lewis Joseph, Yang Qingfeng, Lin Yong, Nakano Hiroyasu, Nedospasov Sergei, Liu Zheng-gang. The death domain kinase RIP has an essential role in DNA damage-induced NF-kappa B activation. Genes Dev. 2003 Mar 21;17(7):873–882. doi: 10.1101/gad.1062403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ichimura Tohru, Wakamiya-Tsuruta Akiko, Itagaki Chiharu, Taoka Masato, Hayano Toshiya, Natsume Tohru, Isobe Toshiaki. Phosphorylation-dependent interaction of kinesin light chain 2 and the 14-3-3 protein. Biochemistry. 2002 Apr 30;41(17):5566–5572. doi: 10.1021/bi015946f. [DOI] [PubMed] [Google Scholar]
  25. Kabashima Tsutomu, Kawaguchi Takumi, Wadzinski Brian E., Uyeda Kosaku. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci U S A. 2003 Apr 8;100(9):5107–5112. doi: 10.1073/pnas.0730817100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kanemaki M., Kurokawa Y., Matsu-ura T., Makino Y., Masani A., Okazaki K., Morishita T., Tamura T. A. TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem. 1999 Aug 6;274(32):22437–22444. doi: 10.1074/jbc.274.32.22437. [DOI] [PubMed] [Google Scholar]
  27. Kondo M., Yamaoka T., Honda S., Miwa Y., Katashima R., Moritani M., Yoshimoto K., Hayashi Y., Itakura M. The rate of cell growth is regulated by purine biosynthesis via ATP production and G(1) to S phase transition. J Biochem. 2000 Jul;128(1):57–64. doi: 10.1093/oxfordjournals.jbchem.a022730. [DOI] [PubMed] [Google Scholar]
  28. Ku Nam-On, Michie Sara, Resurreccion Evelyn Z., Broome Rosemary L., Omary M. Bishr. Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc Natl Acad Sci U S A. 2002 Mar 26;99(7):4373–4378. doi: 10.1073/pnas.072624299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lam L. T., Pham Y. C., Nguyen T. M., Morris G. E. Characterization of a monoclonal antibody panel shows that the myotonic dystrophy protein kinase, DMPK, is expressed almost exclusively in muscle and heart. Hum Mol Genet. 2000 Sep 1;9(14):2167–2173. doi: 10.1093/hmg/9.14.2167. [DOI] [PubMed] [Google Scholar]
  30. Li W., Jin K., Nagayama T., He X., Chang J., Minami M., Graham S. H., Simon R. P., Greenberg D. A. Increased expression of apoptosis-linked gene 2 (ALG2) in the rat brain after temporary focal cerebral ischemia. Neuroscience. 2000;96(1):161–168. doi: 10.1016/s0306-4522(99)00531-x. [DOI] [PubMed] [Google Scholar]
  31. Makeyev Aleksandr V., Liebhaber Stephen A. The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA. 2002 Mar;8(3):265–278. doi: 10.1017/s1355838202024627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Masters S. C., Fu H. 14-3-3 proteins mediate an essential anti-apoptotic signal. J Biol Chem. 2001 Sep 27;276(48):45193–45200. doi: 10.1074/jbc.M105971200. [DOI] [PubMed] [Google Scholar]
  33. May T., Soll J. 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell. 2000 Jan;12(1):53–64. doi: 10.1105/tpc.12.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Moorhead G., Douglas P., Cotelle V., Harthill J., Morrice N., Meek S., Deiting U., Stitt M., Scarabel M., Aitken A. Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. Plant J. 1999 Apr;18(1):1–12. doi: 10.1046/j.1365-313x.1999.00417.x. [DOI] [PubMed] [Google Scholar]
  35. Nurse P. A long twentieth century of the cell cycle and beyond. Cell. 2000 Jan 7;100(1):71–78. doi: 10.1016/s0092-8674(00)81684-0. [DOI] [PubMed] [Google Scholar]
  36. O'Kelly Ita, Butler Margaret H., Zilberberg Noam, Goldstein Steve A. N. Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell. 2002 Nov 15;111(4):577–588. doi: 10.1016/s0092-8674(02)01040-1. [DOI] [PubMed] [Google Scholar]
  37. Pañeda Covadonga, Gorospe Itziar, Herrera Blanca, Nakamura Toshikazu, Fabregat Isabel, Varela-Nieto Isabel. Liver cell proliferation requires methionine adenosyltransferase 2A mRNA up-regulation. Hepatology. 2002 Jun;35(6):1381–1391. doi: 10.1053/jhep.2002.32538. [DOI] [PubMed] [Google Scholar]
  38. Perkins D. N., Pappin D. J., Creasy D. M., Cottrell J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999 Dec;20(18):3551–3567. doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  39. Pozuelo Rubio Mercedes, Peggie Mark, Wong Barry H. C., Morrice Nick, MacKintosh Carol. 14-3-3s regulate fructose-2,6-bisphosphate levels by binding to PKB-phosphorylated cardiac fructose-2,6-bisphosphate kinase/phosphatase. EMBO J. 2003 Jul 15;22(14):3514–3523. doi: 10.1093/emboj/cdg363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rittinger K., Budman J., Xu J., Volinia S., Cantley L. C., Smerdon S. J., Gamblin S. J., Yaffe M. B. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell. 1999 Aug;4(2):153–166. doi: 10.1016/s1097-2765(00)80363-9. [DOI] [PubMed] [Google Scholar]
  41. Roberts M. R. Regulatory 14-3-3 protein-protein interactions in plant cells. Curr Opin Plant Biol. 2000 Oct;3(5):400–405. doi: 10.1016/s1369-5266(00)00103-5. [DOI] [PubMed] [Google Scholar]
  42. Rosenquist M., Alsterfjord M., Larsson C., Sommarin M. Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol. 2001 Sep;127(1):142–149. doi: 10.1104/pp.127.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rosenquist M., Sehnke P., Ferl R. J., Sommarin M., Larsson C. Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity? J Mol Evol. 2000 Nov;51(5):446–458. doi: 10.1007/s002390010107. [DOI] [PubMed] [Google Scholar]
  44. Roth D., Birkenfeld J., Betz H. Dominant-negative alleles of 14-3-3 proteins cause defects in actin organization and vesicle targeting in the yeast Saccharomyces cerevisiae. FEBS Lett. 1999 Nov 5;460(3):411–416. doi: 10.1016/s0014-5793(99)01383-6. [DOI] [PubMed] [Google Scholar]
  45. Roymans D., Willems R., Van Blockstaele D. R., Slegers H. Nucleoside diphosphate kinase (NDPK/NM23) and the waltz with multiple partners: possible consequences in tumor metastasis. Clin Exp Metastasis. 2002;19(6):465–476. doi: 10.1023/a:1020396722860. [DOI] [PubMed] [Google Scholar]
  46. Shen X., Mizuguchi G., Hamiche A., Wu C. A chromatin remodelling complex involved in transcription and DNA processing. Nature. 2000 Aug 3;406(6795):541–544. doi: 10.1038/35020123. [DOI] [PubMed] [Google Scholar]
  47. Stewart S., Sundaram M., Zhang Y., Lee J., Han M., Guan K. L. Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol. 1999 Aug;19(8):5523–5534. doi: 10.1128/mcb.19.8.5523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sumi T., Matsumoto K., Shibuya A., Nakamura T. Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-binding kinase alpha. J Biol Chem. 2001 May 4;276(25):23092–23096. doi: 10.1074/jbc.C100196200. [DOI] [PubMed] [Google Scholar]
  49. Szwergold B. S., Howell S., Beisswenger P. J. Human fructosamine-3-kinase: purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes. 2001 Sep;50(9):2139–2147. doi: 10.2337/diabetes.50.9.2139. [DOI] [PubMed] [Google Scholar]
  50. Tan I., Ng C. H., Lim L., Leung T. Phosphorylation of a novel myosin binding subunit of protein phosphatase 1 reveals a conserved mechanism in the regulation of actin cytoskeleton. J Biol Chem. 2001 Apr 3;276(24):21209–21216. doi: 10.1074/jbc.M102615200. [DOI] [PubMed] [Google Scholar]
  51. Taubes Gary. Neuroscience. Insulin insults may spur Alzheimer's disease. Science. 2003 Jul 4;301(5629):40–41. doi: 10.1126/science.301.5629.40. [DOI] [PubMed] [Google Scholar]
  52. Thomas D., Cherest H., Surdin-Kerjan Y. Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast. Inactivation leads to a nutritional requirement for organic sulfur. EMBO J. 1991 Mar;10(3):547–553. doi: 10.1002/j.1460-2075.1991.tb07981.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Toyo-oka Kazuhito, Shionoya Aki, Gambello Michael J., Cardoso Carlos, Leventer Richard, Ward Heather L., Ayala Ramses, Tsai Li-Huei, Dobyns William, Ledbetter David. 14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nat Genet. 2003 Jul;34(3):274–285. doi: 10.1038/ng1169. [DOI] [PubMed] [Google Scholar]
  54. Tye B. K. MCM proteins in DNA replication. Annu Rev Biochem. 1999;68:649–686. doi: 10.1146/annurev.biochem.68.1.649. [DOI] [PubMed] [Google Scholar]
  55. Tzivion Guri, Avruch Joseph. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem. 2001 Nov 14;277(5):3061–3064. doi: 10.1074/jbc.R100059200. [DOI] [PubMed] [Google Scholar]
  56. Unwin Richard D., Craven Rachel A., Harnden Patricia, Hanrahan Sarah, Totty Nick, Knowles Margaret, Eardley Ian, Selby Peter J., Banks Rosamonde E. Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics. 2003 Aug;3(8):1620–1632. doi: 10.1002/pmic.200300464. [DOI] [PubMed] [Google Scholar]
  57. Wang A. H., Kruhlak M. J., Wu J., Bertos N. R., Vezmar M., Posner B. I., Bazett-Jones D. P., Yang X. J. Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol. 2000 Sep;20(18):6904–6912. doi: 10.1128/mcb.20.18.6904-6912.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Würtele Martin, Jelich-Ottmann Christian, Wittinghofer Alfred, Oecking Claudia. Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO J. 2003 Mar 3;22(5):987–994. doi: 10.1093/emboj/cdg104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Xu W., Chen H., Du K., Asahara H., Tini M., Emerson B. M., Montminy M., Evans R. M. A transcriptional switch mediated by cofactor methylation. Science. 2001 Nov 8;294(5551):2507–2511. doi: 10.1126/science.1065961. [DOI] [PubMed] [Google Scholar]
  60. Yaffe M. B., Rittinger K., Volinia S., Caron P. R., Aitken A., Leffers H., Gamblin S. J., Smerdon S. J., Cantley L. C. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell. 1997 Dec 26;91(7):961–971. doi: 10.1016/s0092-8674(00)80487-0. [DOI] [PubMed] [Google Scholar]
  61. van Hemert M. J., Steensma H. Y., van Heusden G. P. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays. 2001 Oct;23(10):936–946. doi: 10.1002/bies.1134. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES