Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Jan;70(1):321–329. doi: 10.1016/S0006-3495(96)79573-5

Planar asymmetric lipid bilayers of glycosphingolipid or lipopolysaccharide on one side and phospholipids on the other: membrane potential, porin function, and complement activation.

A Wiese 1, J O Reiners 1, K Brandenburg 1, K Kawahara 1, U Zähringer 1, U Seydel 1
PMCID: PMC1224930  PMID: 8770208

Abstract

We have determined some physicochemical properties of the monosaccharide-type fraction (GSL-1) of glycosphingolipids, the major glycolipid components of the outer leaflet of the Gram-negative species Sphingomonas paucimobilis. These properties included the state of order of the hydrocarbon moiety, the effective molecular area, surface charge density, and intrinsic transmembrane potential profile of reconstituted planar asymmetric GSL-1/phospholipid bilayer membranes. We have, furthermore, investigated the insertion into and the function of porin channels in the reconstituted bilayers and the complement-activating capability of GSL-1 surfaces. All results were compared with respective data for deep rough mutant lipopolysaccharide of Salmonella minnesota R595. We found a remarkable agreement in most functional properties of the two glycolipids.

Full text

PDF
322

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benz R. Porin from bacterial and mitochondrial outer membranes. CRC Crit Rev Biochem. 1985;19(2):145–190. doi: 10.3109/10409238509082542. [DOI] [PubMed] [Google Scholar]
  2. Benz R., Schmid A., Hancock R. E. Ion selectivity of gram-negative bacterial porins. J Bacteriol. 1985 May;162(2):722–727. doi: 10.1128/jb.162.2.722-727.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blume A. A comparative study of the phase transitions of phospholipid bilayers and monolayers. Biochim Biophys Acta. 1979 Oct 19;557(1):32–44. doi: 10.1016/0005-2736(79)90087-7. [DOI] [PubMed] [Google Scholar]
  4. Brandenburg K., Seydel U. Investigation into the fluidity of lipopolysaccharide and free lipid A membrane systems by Fourier-transform infrared spectroscopy and differential scanning calorimetry. Eur J Biochem. 1990 Jul 20;191(1):229–236. doi: 10.1111/j.1432-1033.1990.tb19114.x. [DOI] [PubMed] [Google Scholar]
  5. Casal H. L., Mantsch H. H. Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim Biophys Acta. 1984 Dec 4;779(4):381–401. doi: 10.1016/0304-4157(84)90017-0. [DOI] [PubMed] [Google Scholar]
  6. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  7. Hall J. E., Latorre R. Nonactin-K+ complex as a probe for membrane asymmetry. Biophys J. 1976 Jan;16(1):99–103. doi: 10.1016/S0006-3495(76)85667-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kawahara K., Seydel U., Matsuura M., Danbara H., Rietschel E. T., Zähringer U. Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett. 1991 Nov 4;292(1-2):107–110. doi: 10.1016/0014-5793(91)80845-t. [DOI] [PubMed] [Google Scholar]
  9. Kawahara K., Uchida K., Aida K. Isolation of an unusual 'lipid A' type glycolipid from Pseudomonas paucimobilis. Biochim Biophys Acta. 1982 Sep 14;712(3):571–575. doi: 10.1016/0005-2760(82)90285-5. [DOI] [PubMed] [Google Scholar]
  10. Kawasaki S., Moriguchi R., Sekiya K., Nakai T., Ono E., Kume K., Kawahara K. The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. J Bacteriol. 1994 Jan;176(2):284–290. doi: 10.1128/jb.176.2.284-290.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Latorre R., Hall J. E. Dipole potential measurements in asymmetric membranes. Nature. 1976 Nov 25;264(5584):361–363. doi: 10.1038/264361a0. [DOI] [PubMed] [Google Scholar]
  12. Marcelja S. Chain ordering in liquid crystals. II. Structure of bilayer membranes. Biochim Biophys Acta. 1974 Oct 29;367(2):165–176. doi: 10.1016/0005-2736(74)90040-6. [DOI] [PubMed] [Google Scholar]
  13. Mauro A., Blake M., Labarca P. Voltage gating of conductance in lipid bilayers induced by porin from outer membrane of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1071–1075. doi: 10.1073/pnas.85.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
  15. Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nagle J. F. Theory of lipid monolayer and bilayer phase transitions: effect of headgroup interactions. J Membr Biol. 1976;27(3):233–250. doi: 10.1007/BF01869138. [DOI] [PubMed] [Google Scholar]
  17. Nakae T. Identification of the outer membrane protein of E. coli that produces transmembrane channels in reconstituted vesicle membranes. Biochem Biophys Res Commun. 1976 Aug 9;71(3):877–884. doi: 10.1016/0006-291x(76)90913-x. [DOI] [PubMed] [Google Scholar]
  18. Osborn M. J., Gander J. E., Parisi E., Carson J. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem. 1972 Jun 25;247(12):3962–3972. [PubMed] [Google Scholar]
  19. Rietschel E. T., Kirikae T., Schade F. U., Mamat U., Schmidt G., Loppnow H., Ulmer A. J., Zähringer U., Seydel U., Di Padova F. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994 Feb;8(2):217–225. doi: 10.1096/fasebj.8.2.8119492. [DOI] [PubMed] [Google Scholar]
  20. Schoch P., Sargent D. F., Schwyzer R. Capacitance and conductance as tools for the measurement of asymmetric surface potentials and energy barriers of lipid bilayer membranes. J Membr Biol. 1979 Apr 12;46(1):71–89. doi: 10.1007/BF01959975. [DOI] [PubMed] [Google Scholar]
  21. Schröder G., Brandenburg K., Brade L., Seydel U. Pore formation by complement in the outer membrane of gram-negative bacteria studied with asymmetric planar lipopolysaccharide/phospholipid bilayers. J Membr Biol. 1990 Nov;118(2):161–170. doi: 10.1007/BF01868473. [DOI] [PubMed] [Google Scholar]
  22. Seydel U., Eberstein W., Schröder G., Brandenburg K. Electrostatic potential barrier in asymmetric planar lipopolysaccharide/phospholipid bilayers probed with the valinomycin-K+ complex. Z Naturforsch C. 1992 Sep-Oct;47(9-10):757–761. doi: 10.1515/znc-1992-9-1020. [DOI] [PubMed] [Google Scholar]
  23. Weiss M. S., Abele U., Weckesser J., Welte W., Schiltz E., Schulz G. E. Molecular architecture and electrostatic properties of a bacterial porin. Science. 1991 Dec 13;254(5038):1627–1630. doi: 10.1126/science.1721242. [DOI] [PubMed] [Google Scholar]
  24. Weiss M. S., Schulz G. E. Structure of porin refined at 1.8 A resolution. J Mol Biol. 1992 Sep 20;227(2):493–509. doi: 10.1016/0022-2836(92)90903-w. [DOI] [PubMed] [Google Scholar]
  25. Wiese A., Schröder G., Brandenburg K., Hirsch A., Welte W., Seydel U. Influence of the lipid matrix on incorporation and function of LPS-free porin from Paracoccus denitrificans. Biochim Biophys Acta. 1994 Mar 23;1190(2):231–242. doi: 10.1016/0005-2736(94)90079-5. [DOI] [PubMed] [Google Scholar]
  26. Yamamoto A., Yano I., Masui M., Yabuuchi E. Isolation of a novel sphingoglycolipid containing glucuronic acid and 2-hydroxy fatty acid from Flavobacterium devorans ATCC 10829. J Biochem. 1978 Apr;83(4):1213–1216. doi: 10.1093/oxfordjournals.jbchem.a132015. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES