Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Feb;70(2):818–830. doi: 10.1016/S0006-3495(96)79621-2

Adsorption of ruthenium red to phospholipid membranes.

D Voelker 1, P Smejtek 1
PMCID: PMC1224982  PMID: 8789099

Abstract

We have measured the distribution of the hexavalent ruthenium red cation (RuR) between water and phospholipid membranes, have shown the critical importance of membrane negative surface charge for RuR binding, and determined the association constant of RuR for different phospholipid bilayers. The studies were performed with liposomes made of mixtures of zwitterionic L-alpha-phosphatidylcholine (PC), and one of the negatively charged phospholipids: L-alpha-phosphatidylserine (PS), L-alpha-phosphatidylinositol (PI), or L-alpha-phosphatidylglycerol (PG). Lipid composition of PC:PX membranes was 1:0, 19:1, 9:1, and 4:1. Liposomes were processed using freeze-and-thaw treatment, and their size distribution was characterized by light scattering and electron microscopy. Experimental distribution isotherms of RuR obtained by ultracentrifugation and spectrophotometry can be reproduced with the Langmuir-Stern-Grahame model, assuming that RuR behaves in the diffuse double layer as an ion with effective valency < 6. In terms of this model, PC-PS, PC-PI, and PC-PG membranes were found to be electrostatically equivalent and the intrinsic association constants of RuR were obtained. RuR has highest affinity to PS-containing membranes; its association constant for PC-PI and PC-PG membranes is about 5 times smaller than that for PC-PS membranes. From the comparison of RuR binding to mixed negatively charged phospholipid membranes and RuR binding to sarcoplasmic reticulum (SR), we conclude that the low-affinity RuR binding sites may indeed be associated with the lipid bilayer of SR.

Full text

PDF
822

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez O., Brodwick M., Latorre R., McLaughlin A., McLaughlin S., Szabo G. Large divalent cations and electrostatic potentials adjacent to membranes. Experimental results with hexamethonium. Biophys J. 1983 Dec;44(3):333–342. doi: 10.1016/S0006-3495(83)84307-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann R., Maggi C. A. Ruthenium red as a capsaicin antagonist. Life Sci. 1991;49(12):849–856. doi: 10.1016/0024-3205(91)90169-c. [DOI] [PubMed] [Google Scholar]
  3. Andersen O. S., Feldberg S., Nakadomari H., Levy S., McLaughlin S. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes. Biophys J. 1978 Jan;21(1):35–70. doi: 10.1016/S0006-3495(78)85507-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arrio B., Johannin G., Carrette A., Chevallier J., Brèthes D. Electrokinetic and hydrodynamic properties of sarcoplasmic reticulum vesicles: a study by laser Doppler electrophoresis and quasi-elastic light scattering. Arch Biochem Biophys. 1984 Jan;228(1):220–229. doi: 10.1016/0003-9861(84)90063-8. [DOI] [PubMed] [Google Scholar]
  5. Beschiaschvili G., Seelig J. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry. 1990 Jan 9;29(1):52–58. doi: 10.1021/bi00453a007. [DOI] [PubMed] [Google Scholar]
  6. Carnie S., McLaughlin S. Large divalent cations and electrostatic potentials adjacent to membranes. A theoretical calculation. Biophys J. 1983 Dec;44(3):325–332. doi: 10.1016/S0006-3495(83)84306-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carrondo M. A., Griffith W. P., Hall J. P., Skapski A. C. X-ray structure of [Ru3 O2 (NH3)14]6+, cation of the cytological reagent Ruthenium Red. Biochim Biophys Acta. 1980 Feb 7;627(3):332–334. doi: 10.1016/0304-4165(80)90464-x. [DOI] [PubMed] [Google Scholar]
  8. Charuk J. H., Pirraglia C. A., Reithmeier R. A. Interaction of ruthenium red with Ca2(+)-binding proteins. Anal Biochem. 1990 Jul;188(1):123–131. doi: 10.1016/0003-2697(90)90539-l. [DOI] [PubMed] [Google Scholar]
  9. Chung L., Kaloyanides G., McDaniel R., McLaughlin A., McLaughlin S. Interaction of gentamicin and spermine with bilayer membranes containing negatively charged phospholipids. Biochemistry. 1985 Jan 15;24(2):442–452. doi: 10.1021/bi00323a030. [DOI] [PubMed] [Google Scholar]
  10. Corbalan-Garcia S., Teruel J. A., Gomez-Fernandez J. C. Characterization of ruthenium red-binding sites of the Ca(2+)-ATPase from sarcoplasmic reticulum and their interaction with Ca(2+)-binding sites. Biochem J. 1992 Nov 1;287(Pt 3):767–774. doi: 10.1042/bj2870767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dierichs R. Ruthenium red as a stain for electron microscopy. Some new aspects of its application and mode of action. Histochemistry. 1979 Nov;64(2):171–187. doi: 10.1007/BF00490097. [DOI] [PubMed] [Google Scholar]
  12. Herbette L., DeFoor P., Fleischer S., Pascolini D., Scarpa A., Blasie J. K. The separate profile structures of the functional calcium pump protein and the phospholipid bilayer within isolated sarcoplasmic reticulum membranes determined by X-ray and neutron diffraction. Biochim Biophys Acta. 1985 Jul 11;817(1):103–122. doi: 10.1016/0005-2736(85)90073-2. [DOI] [PubMed] [Google Scholar]
  13. Hochman J. H., Partridge B., Ferguson-Miller S. An effective electron donor to cytochrome oxidase. Purification, identification, and kinetic characterization of a contaminant of ruthenium red, hexaamineruthenium II/III. J Biol Chem. 1981 Aug 25;256(16):8693–8698. [PubMed] [Google Scholar]
  14. Kim J., Mosior M., Chung L. A., Wu H., McLaughlin S. Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys J. 1991 Jul;60(1):135–148. doi: 10.1016/S0006-3495(91)82037-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Langner M., Cafiso D., Marcelja S., McLaughlin S. Electrostatics of phosphoinositide bilayer membranes. Theoretical and experimental results. Biophys J. 1990 Feb;57(2):335–349. doi: 10.1016/S0006-3495(90)82535-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lau A., McLaughlin A., McLaughlin S. The adsorption of divalent cations to phosphatidylglycerol bilayer membranes. Biochim Biophys Acta. 1981 Jul 20;645(2):279–292. doi: 10.1016/0005-2736(81)90199-1. [DOI] [PubMed] [Google Scholar]
  17. Liu G. H., Oba T. Effects of tetraphenylboron-induced increase in inner surface charge on Ca2+ release from sarcoplasmic reticulum. Jpn J Physiol. 1990;40(5):723–736. doi: 10.2170/jjphysiol.40.723. [DOI] [PubMed] [Google Scholar]
  18. Luft J. H. Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec. 1971 Nov;171(3):347–368. doi: 10.1002/ar.1091710302. [DOI] [PubMed] [Google Scholar]
  19. Luft J. H. Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat Rec. 1971 Nov;171(3):369–415. doi: 10.1002/ar.1091710303. [DOI] [PubMed] [Google Scholar]
  20. Luthra R., Olson M. S. The inhibition of calcium uptake and release by rat liver mitochondria by ruthenium red. FEBS Lett. 1977 Sep 1;81(1):142–146. doi: 10.1016/0014-5793(77)80947-2. [DOI] [PubMed] [Google Scholar]
  21. Mayer L. D., Hope M. J., Cullis P. R., Janoff A. S. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim Biophys Acta. 1985 Jul 11;817(1):193–196. doi: 10.1016/0005-2736(85)90084-7. [DOI] [PubMed] [Google Scholar]
  22. McLaughlin S., Harary H. The hydrophobic adsorption of charged molecules to bilayer membranes: a test of the applicability of the stern equation. Biochemistry. 1976 May 4;15(9):1941–1948. doi: 10.1021/bi00654a023. [DOI] [PubMed] [Google Scholar]
  23. McLaughlin S., Mulrine N., Gresalfi T., Vaio G., McLaughlin A. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine. J Gen Physiol. 1981 Apr;77(4):445–473. doi: 10.1085/jgp.77.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
  25. Missiaen L., De Smedt H., Droogmans G., Wuytack F., Raeymaekers L., Casteels R. Ruthenium red and compound 48/80 inhibit the smooth-muscle plasma-membrane Ca2+ pump via interaction with associated polyphosphoinositides. Biochim Biophys Acta. 1990 Apr 30;1023(3):449–454. doi: 10.1016/0005-2736(90)90138-e. [DOI] [PubMed] [Google Scholar]
  26. Moore C. L. Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun. 1971 Jan 22;42(2):298–305. doi: 10.1016/0006-291x(71)90102-1. [DOI] [PubMed] [Google Scholar]
  27. Mosior M., McLaughlin S. Binding of basic peptides to acidic lipids in membranes: effects of inserting alanine(s) between the basic residues. Biochemistry. 1992 Feb 18;31(6):1767–1773. doi: 10.1021/bi00121a026. [DOI] [PubMed] [Google Scholar]
  28. Mosior M., McLaughlin S. Peptides that mimic the pseudosubstrate region of protein kinase C bind to acidic lipids in membranes. Biophys J. 1991 Jul;60(1):149–159. doi: 10.1016/S0006-3495(91)82038-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moutin M. J., Rapin C., Dupont Y. Ruthenium red affects the intrinsic fluorescence of the calcium-ATPase of skeletal sarcoplasmic reticulum. Biochim Biophys Acta. 1992 Jun 19;1100(3):321–328. doi: 10.1016/0167-4838(92)90488-y. [DOI] [PubMed] [Google Scholar]
  30. Murano E., Paoletti S., Cesàro A., Rizzo R. Ruthenium red complexation with ionic polysaccharides in dilute aqueous solutions: chirooptical evidence of stereospecific interaction. Anal Biochem. 1990 May 15;187(1):120–123. doi: 10.1016/0003-2697(90)90427-b. [DOI] [PubMed] [Google Scholar]
  31. Nelson A. P., McQuarrie D. A. The effect of discrete charges on the electrical properties of a membrane. I. J Theor Biol. 1975 Nov;55(1):13–27. doi: 10.1016/s0022-5193(75)80106-8. [DOI] [PubMed] [Google Scholar]
  32. Peitzsch R. M., Eisenberg M., Sharp K. A., McLaughlin S. Calculations of the electrostatic potential adjacent to model phospholipid bilayers. Biophys J. 1995 Mar;68(3):729–738. doi: 10.1016/S0006-3495(95)80253-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. REIMANN B. [On the value of ruthenium red as a contrast medium for electron microscopy]. Mikroskopie. 1961 Nov;16:224–226. [PubMed] [Google Scholar]
  34. Salama G., Abramson J. Silver ions trigger Ca2+ release by acting at the apparent physiological release site in sarcoplasmic reticulum. J Biol Chem. 1984 Nov 10;259(21):13363–13369. [PubMed] [Google Scholar]
  35. Sasaki T., Naka M., Nakamura F., Tanaka T. Ruthenium red inhibits the binding of calcium to calmodulin required for enzyme activation. J Biol Chem. 1992 Oct 25;267(30):21518–21523. [PubMed] [Google Scholar]
  36. Schoch P., Sargent D. F. Quantitative analysis of the binding of melittin to planar lipid bilayers allowing for the discrete-charge effect. Biochim Biophys Acta. 1980 Nov 4;602(2):234–247. doi: 10.1016/0005-2736(80)90307-7. [DOI] [PubMed] [Google Scholar]
  37. Schwarz G., Beschiaschvili G. Thermodynamic and kinetic studies on the association of melittin with a phospholipid bilayer. Biochim Biophys Acta. 1989 Feb 13;979(1):82–90. doi: 10.1016/0005-2736(89)90526-9. [DOI] [PubMed] [Google Scholar]
  38. Scofano H., Barrabin H., Inesi G., Cohen J. A. Stoichiometric and electrostatic characterization of calcium binding to native and lipid-substituted adenosinetriphosphatase of sarcoplasmic reticulum. Biochim Biophys Acta. 1985 Sep 25;819(1):93–104. doi: 10.1016/0005-2736(85)90199-3. [DOI] [PubMed] [Google Scholar]
  39. Smejtek P., Wang S. R. Adsorption to dipalmitoylphosphatidylcholine membranes in gel and fluid state: pentachlorophenolate, dipicrylamine, and tetraphenylborate. Biophys J. 1990 Nov;58(5):1285–1294. doi: 10.1016/S0006-3495(90)82468-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stankowski S. Surface charging by large multivalent molecules. Extending the standard Gouy-Chapman treatment. Biophys J. 1991 Aug;60(2):341–351. doi: 10.1016/S0006-3495(91)82059-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Taipale H. T., Kauppinen R. A., Komulainen H. Ruthenium red inhibits the voltage-dependent increase in cytosolic free calcium in cortical synaptosomes from guinea-pig. Biochem Pharmacol. 1989 Apr 1;38(7):1109–1113. doi: 10.1016/0006-2952(89)90256-6. [DOI] [PubMed] [Google Scholar]
  42. Tsien R. Y., Hladky S. B. Ion repulsion within membranes. Biophys J. 1982 Jul;39(1):49–56. doi: 10.1016/S0006-3495(82)84489-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vasington F. D., Gazzotti P., Tiozzo R., Carafoli E. The effect of ruthenium red on Ca 2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta. 1972 Jan 21;256(1):43–54. doi: 10.1016/0005-2728(72)90161-2. [DOI] [PubMed] [Google Scholar]
  44. Wang C. C., Bruner L. J. Evidence for a discrete charge effect within lipid bilayer membranes. Biophys J. 1978 Dec;24(3):749–764. doi: 10.1016/S0006-3495(78)85418-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Watson E. L., Vincenzi F. F., Davis P. W. Ca 2+ -activated membrane ATPase: selective inhibition by ruthenium red. Biochim Biophys Acta. 1971 Dec 3;249(2):606–610. doi: 10.1016/0005-2736(71)90140-4. [DOI] [PubMed] [Google Scholar]
  46. Winiski A. P., McLaughlin A. C., McDaniel R. V., Eisenberg M., McLaughlin S. An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers. Biochemistry. 1986 Dec 16;25(25):8206–8214. doi: 10.1021/bi00373a013. [DOI] [PubMed] [Google Scholar]
  47. Winterhalter M., Lasic D. D. Liposome stability and formation: experimental parameters and theories on the size distribution. Chem Phys Lipids. 1993 Sep;64(1-3):35–43. doi: 10.1016/0009-3084(93)90056-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES