Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Feb;70(2):924–931. doi: 10.1016/S0006-3495(96)79635-2

The nature of rhodopsin-triggered photocurrents in Chlamydomonas. I. Kinetics and influence of divalent ions.

E M Holland 1, F J Braun 1, C Nonnengässer 1, H Harz 1, P Hegemann 1
PMCID: PMC1224992  PMID: 8789109

Abstract

In the green alga Chlamydomonas chlamyrhodopsin fulfills its role as a light sensor by absorbing light and activating photoreceptor channels within the eyespot area. At intense light stimuli, the photoreceptor (P) current triggers a fast and a slow flagellar current that finally leads to backward swimming (stop response). Here we report about probing the photoreceptor current directly at the eyespot. This allows the detection of the whole P current with a size of above 50 pA. The P current appears with a delay of less than 50 microseconds, suggesting that rhodopsin and the P channel are closely coupled or form one ion channel complex. The Ca2+ dependence of the P current has been demonstrated with the established suction technique in a capacitive mode. The P current shows the maximum amplitude at only 300 nM Ca2+, and it gradually declines at higher Ca2+. In addition to Ca2+, the photoreceptor and the fast flagellar current can be carried by Sr2+ and Ba2+. Mg2+ is conducted less efficiently and at high concentrations blocks the photoreceptor channel. A motion analysis of the cells shows that only Ca2+ and Sr2+ can induce physiological stop responses, whereas the large Ba2+ currents cause abnormal long-lasting cell spiraling.

Full text

PDF
924

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck C., Uhl R. On the localization of voltage-sensitive calcium channels in the flagella of Chlamydomonas reinhardtii. J Cell Biol. 1994 Jun;125(5):1119–1125. doi: 10.1083/jcb.125.5.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beckmann M., Hegemann P. In vitro identification of rhodopsin in the green alga Chlamydomonas. Biochemistry. 1991 Apr 16;30(15):3692–3697. doi: 10.1021/bi00229a014. [DOI] [PubMed] [Google Scholar]
  3. Bessen M., Fay R. B., Witman G. B. Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas. J Cell Biol. 1980 Aug;86(2):446–455. doi: 10.1083/jcb.86.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Foster K. W., Saranak J., Patel N., Zarilli G., Okabe M., Kline T., Nakanishi K. A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature. 1984 Oct 25;311(5988):756–759. doi: 10.1038/311756a0. [DOI] [PubMed] [Google Scholar]
  5. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  6. Hegemann P., Gärtner W., Uhl R. All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin. Biophys J. 1991 Dec;60(6):1477–1489. doi: 10.1016/S0006-3495(91)82183-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kamiya R., Witman G. B. Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J Cell Biol. 1984 Jan;98(1):97–107. doi: 10.1083/jcb.98.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lawson M. A., Zacks D. N., Derguini F., Nakanishi K., Spudich J. L. Retinal analog restoration of photophobic responses in a blind Chlamydomonas reinhardtii mutant. Evidence for an archaebacterial like chromophore in a eukaryotic rhodopsin. Biophys J. 1991 Dec;60(6):1490–1498. doi: 10.1016/S0006-3495(91)82184-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Litvin F. F., Sineshchekov O. A., Sineshchekov V. A. Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis. Nature. 1978 Feb 2;271(5644):476–478. doi: 10.1038/271476a0. [DOI] [PubMed] [Google Scholar]
  10. Nichols K. M., Rikmenspoel R. Control of flagellar motion in Chlamydomonas and Euglena by mechanical microinjection of Mg2+ and Ca2+ and by electric current injection. J Cell Sci. 1978 Feb;29:233–247. doi: 10.1242/jcs.29.1.233. [DOI] [PubMed] [Google Scholar]
  11. Schmidt J. A., Eckert R. Calcium couples flagellar reversal to photostimulation in Chlamydomonas reinhardtii. Nature. 1976 Aug 19;262(5570):713–715. doi: 10.1038/262713a0. [DOI] [PubMed] [Google Scholar]
  12. Sineshchekov O. A., Litvin F. F., Keszthelyi L. Two components of photoreceptor potential in phototaxis of the flagellated green alga Haematococcus pluvialis. Biophys J. 1990 Jan;57(1):33–39. doi: 10.1016/S0006-3495(90)82504-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Takahashi T., Yoshihara K., Watanabe M., Kubota M., Johnson R., Derguini F., Nakanishi K. Photoisomerization of retinal at 13-ene is important for phototaxis of Chlamydomonas reinhardtii: simultaneous measurements of phototactic and photophobic responses. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1273–1279. doi: 10.1016/0006-291x(91)91031-7. [DOI] [PubMed] [Google Scholar]
  14. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  15. Uhl R., Hegemann P. Probing visual transduction in a plant cell: Optical recording of rhodopsin-induced structural changes from Chlamydomonas reinhardtii. Biophys J. 1990 Nov;58(5):1295–1302. doi: 10.1016/S0006-3495(90)82469-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Witman G. B. Chlamydomonas phototaxis. Trends Cell Biol. 1993 Nov;3(11):403–408. doi: 10.1016/0962-8924(93)90091-e. [DOI] [PubMed] [Google Scholar]
  17. Yan B., Nakanishi K., Spudich J. L. Mechanism of activation of sensory rhodopsin I: evidence for a steric trigger. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9412–9416. doi: 10.1073/pnas.88.21.9412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yellen G. Calcium channels. Structure and selectivity. Nature. 1993 Nov 11;366(6451):109–110. doi: 10.1038/366109a0. [DOI] [PubMed] [Google Scholar]
  19. Zacks D. N., Derguini F., Nakanishi K., Spudich J. L. Comparative study of phototactic and photophobic receptor chromophore properties in Chlamydomonas reinhardtii. Biophys J. 1993 Jul;65(1):508–518. doi: 10.1016/S0006-3495(93)81067-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES