Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Aug;67(2):493–504. doi: 10.1016/S0006-3495(94)80546-6

The electrostatic basis for the interfacial binding of secretory phospholipases A2.

D L Scott 1, A M Mandel 1, P B Sigler 1, B Honig 1
PMCID: PMC1225392  PMID: 7948668

Abstract

Biochemical and structural data suggest that electrostatic forces play a critical role in the binding of secretory phospholipases A2 to substrate aggregates (micelles, vesicles, monolayers, and membranes). This initial binding (adsorption) of the enzyme to the interface is kinetically distinct from the subsequent binding of substrate to the buried active site. Thus, in the absence of specific active-site interactions, electrostatic forces operating at the molecular surface may orient and hold the enzyme at the interface. We have calculated the electrostatic potentials for 10 species of secretory phospholipases A2 whose atomic coordinates have been determined by x-ray crystallography. Most of these enzymes show a marked electrostatic sidedness that is accentuated to a variable degree by the presence of the essential cofactor calcium ion. This asymmetry suggests a discrete interfacial binding region on the protein's surface, the location of which is in general agreement with proposals derived from the results of chemical modification, mutational, and crystallographic experiments.

Full text

PDF
493

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunie S., Bolin J., Gewirth D., Sigler P. B. The refined crystal structure of dimeric phospholipase A2 at 2.5 A. Access to a shielded catalytic center. J Biol Chem. 1985 Aug 15;260(17):9742–9749. [PubMed] [Google Scholar]
  2. Cevc G. Membrane electrostatics. Biochim Biophys Acta. 1990 Oct 8;1031(3):311–382. doi: 10.1016/0304-4157(90)90015-5. [DOI] [PubMed] [Google Scholar]
  3. Dijkstra B. W., Drenth J., Kalk K. H. Active site and catalytic mechanism of phospholipase A2. Nature. 1981 Feb 12;289(5798):604–606. doi: 10.1038/289604a0. [DOI] [PubMed] [Google Scholar]
  4. Dijkstra B. W., Renetseder R., Kalk K. H., Hol W. G., Drenth J. Structure of porcine pancreatic phospholipase A2 at 2.6 A resolution and comparison with bovine phospholipase A2. J Mol Biol. 1983 Jul 25;168(1):163–179. doi: 10.1016/s0022-2836(83)80328-3. [DOI] [PubMed] [Google Scholar]
  5. Fremont D. H., Anderson D. H., Wilson I. A., Dennis E. A., Xuong N. H. Crystal structure of phospholipase A2 from Indian cobra reveals a trimeric association. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):342–346. doi: 10.1073/pnas.90.1.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heinrikson R. L. Dissection and sequence analysis of phospholipases A2. Methods Enzymol. 1991;197:201–214. doi: 10.1016/0076-6879(91)97146-p. [DOI] [PubMed] [Google Scholar]
  7. Heinrikson R. L., Krueger E. T., Keim P. S. Amino acid sequence of phospholipase A2-alpha from the venom of Crotalus adamanteus. A new classification of phospholipases A2 based upon structural determinants. J Biol Chem. 1977 Jul 25;252(14):4913–4921. [PubMed] [Google Scholar]
  8. Jain M. K., Jahagirdar D. V. Action of phospholipase A2 on bilayers. Effect of inhibitors. Biochim Biophys Acta. 1985 Apr 11;814(2):319–326. doi: 10.1016/0005-2736(85)90451-1. [DOI] [PubMed] [Google Scholar]
  9. Jain M. K., Maliwal B. P. Spectroscopic properties of the states of pig pancreatic phospholipase A2 at interfaces and their possible molecular origin. Biochemistry. 1993 Nov 9;32(44):11838–11846. doi: 10.1021/bi00095a012. [DOI] [PubMed] [Google Scholar]
  10. Klapper I., Hagstrom R., Fine R., Sharp K., Honig B. Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins. 1986 Sep;1(1):47–59. doi: 10.1002/prot.340010109. [DOI] [PubMed] [Google Scholar]
  11. Kuchler K., Gmachl M., Sippl M. J., Kreil G. Analysis of the cDNA for phospholipase A2 from honeybee venom glands. The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. Eur J Biochem. 1989 Sep 1;184(1):249–254. doi: 10.1111/j.1432-1033.1989.tb15014.x. [DOI] [PubMed] [Google Scholar]
  12. Lugtigheid R. B., Nicolaes G. A., Veldhuizen E. J., Slotboom A. J., Verheij H. M., De Haas G. H. Acylation of porcine pancreatic phospholipase A2 influences penetration and substrate head-group binding, depending on the position of the acylated lysine in the enzyme molecule. Eur J Biochem. 1993 Sep 1;216(2):519–525. doi: 10.1111/j.1432-1033.1993.tb18170.x. [DOI] [PubMed] [Google Scholar]
  13. Menashe M., Romero G., Biltonen R. L., Lichtenberg D. Hydrolysis of dipalmitoylphosphatidylcholine small unilamellar vesicles by porcine pancreatic phospholipase A2. J Biol Chem. 1986 Apr 25;261(12):5328–5333. [PubMed] [Google Scholar]
  14. Myatt E. A., Stevens F. J., Sigler P. B. Effects of pH and calcium ion on self-association properties of two dimeric phospholipases A2. J Biol Chem. 1991 Sep 5;266(25):16331–16335. [PubMed] [Google Scholar]
  15. Ramirez F., Jain M. K. Phospholipase A2 at the bilayer interface. Proteins. 1991;9(4):229–239. doi: 10.1002/prot.340090402. [DOI] [PubMed] [Google Scholar]
  16. Renetseder R., Brunie S., Dijkstra B. W., Drenth J., Sigler P. B. A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. J Biol Chem. 1985 Sep 25;260(21):11627–11634. [PubMed] [Google Scholar]
  17. Scott D. L., Otwinowski Z., Gelb M. H., Sigler P. B. Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue. Science. 1990 Dec 14;250(4987):1563–1566. doi: 10.1126/science.2274788. [DOI] [PubMed] [Google Scholar]
  18. Scott D. L., White S. P., Browning J. L., Rosa J. J., Gelb M. H., Sigler P. B. Structures of free and inhibited human secretory phospholipase A2 from inflammatory exudate. Science. 1991 Nov 15;254(5034):1007–1010. doi: 10.1126/science.1948070. [DOI] [PubMed] [Google Scholar]
  19. Scott D. L., White S. P., Otwinowski Z., Yuan W., Gelb M. H., Sigler P. B. Interfacial catalysis: the mechanism of phospholipase A2. Science. 1990 Dec 14;250(4987):1541–1546. doi: 10.1126/science.2274785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Seilhamer J. J., Pruzanski W., Vadas P., Plant S., Miller J. A., Kloss J., Johnson L. K. Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid. J Biol Chem. 1989 Apr 5;264(10):5335–5338. [PubMed] [Google Scholar]
  21. Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
  22. Thuren T., Virtanen J. A., Verger R., Kinnunen P. K. Hydrolysis of 1-palmitoyl-2-[6-(pyren-1-yl)]hexanoyl-sn-glycero- 3-phospholipids by phospholipase A2: effect of the polar head-group. Biochim Biophys Acta. 1987 Feb 23;917(3):411–417. doi: 10.1016/0005-2760(87)90120-2. [DOI] [PubMed] [Google Scholar]
  23. Tomasselli A. G., Hui J., Fisher J., Zürcher-Neely H., Reardon I. M., Oriaku E., Kézdy F. J., Heinrikson R. L. Dimerization and activation of porcine pancreatic phospholipase A2 via substrate level acylation of lysine 56. J Biol Chem. 1989 Jun 15;264(17):10041–10047. [PubMed] [Google Scholar]
  24. Tsai I. H., Wu S. H., Lo T. B. Complete amino acid sequence of a phospholipase A2 from the venom of Naja naja atra (Taiwan cobra). Toxicon. 1981;19(1):141–152. doi: 10.1016/0041-0101(81)90126-4. [DOI] [PubMed] [Google Scholar]
  25. Volwerk J. J., Jost P. C., de Haas G. H., Griffith O. H. Activation of porcine pancreatic phospholipase A2 by the presence of negative charges at the lipid-water interface. Biochemistry. 1986 Apr 8;25(7):1726–1733. doi: 10.1021/bi00355a042. [DOI] [PubMed] [Google Scholar]
  26. Wells M. A. A kinetic study of the phospholipase A 2 (Crotalus adamanteus) catalyzed hydrolysis of 1,2-dibutyryl-sn-glycero-3-phosphorylcholine. Biochemistry. 1972 Mar 14;11(6):1030–1041. doi: 10.1021/bi00756a013. [DOI] [PubMed] [Google Scholar]
  27. Wery J. P., Schevitz R. W., Clawson D. K., Bobbitt J. L., Dow E. R., Gamboa G., Goodson T., Jr, Hermann R. B., Kramer R. M., McClure D. B. Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A2 at 2.2 A resolution. Nature. 1991 Jul 4;352(6330):79–82. doi: 10.1038/352079a0. [DOI] [PubMed] [Google Scholar]
  28. Westerlund B., Nordlund P., Uhlin U., Eaker D., Eklund H. The three-dimensional structure of notexin, a presynaptic neurotoxic phospholipase A2 at 2.0 A resolution. FEBS Lett. 1992 Apr 20;301(2):159–164. doi: 10.1016/0014-5793(92)81238-h. [DOI] [PubMed] [Google Scholar]
  29. White S. P., Scott D. L., Otwinowski Z., Gelb M. H., Sigler P. B. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science. 1990 Dec 14;250(4987):1560–1563. doi: 10.1126/science.2274787. [DOI] [PubMed] [Google Scholar]
  30. Yang C. C., Chang L. S. Studies on the status of lysine residues in phospholipase A2 from Naja naja atra (Taiwan cobra) snake venom. Biochem J. 1989 Sep 15;262(3):855–860. doi: 10.1042/bj2620855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yoshida M., Shieh T. C., Oda N., Kihara H., Chang C. C., Ohno M. Tryptophan residue essential for activity of Naja naja atra phospholipase A2. J Biochem. 1988 Jan;103(1):156–161. doi: 10.1093/oxfordjournals.jbchem.a122223. [DOI] [PubMed] [Google Scholar]
  32. van Oort M. G., Dijkman R., Hille J. D., de Haas G. H. Kinetic behavior of porcine pancreatic phospholipase A2 on zwitterionic and negatively charged single-chain substrates. Biochemistry. 1985 Dec 31;24(27):7987–7993. doi: 10.1021/bi00348a022. [DOI] [PubMed] [Google Scholar]
  33. van den Bergh C. J., Bekkers A. C., Verheij H. M., de Haas G. H. Glutamic acid 71 and aspartic acid 66 control the binding of the second calcium ion in porcine pancreatic phospholipase A2. Eur J Biochem. 1989 Jun 15;182(2):307–313. doi: 10.1111/j.1432-1033.1989.tb14831.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES