Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Aug;67(2):825–836. doi: 10.1016/S0006-3495(94)80542-9

Conformational transitions of duplex and triplex nucleic acid helices: thermodynamic analysis of effects of salt concentration on stability using preferential interaction coefficients.

J P Bond 1, C F Anderson 1, M T Record Jr 1
PMCID: PMC1225425  PMID: 7948695

Abstract

For order-disorder transitions of double- and triple-stranded nucleic acid helices, the midpoint temperatures Tm depend strongly on a +/-, the mean ionic activity of uniunivalent salt. Experimental determinations of dTm/d ln a +/- and of the enthalpy change (delta H(o)) accompanying the transition in excess salt permit evaluation of delta gamma, the stoichiometrically weighted combination of preferential interaction coefficients, each of which reflects thermodynamic effects of interactions of salt ions with a reactant or product of the conformational transition (formula; see text) Here delta H(o) is defined per mole of nucleotide by analogy to delta gamma. Application of Eq. 1 to experimental values of delta H(o) and Tm yields values of delta gamma for the denaturation of B-DNA over the range of NaCl concentrations 0.01-0.20 M (Privalov et al. (1969), Biopolymers 8,559) and for each of four order-disorder transitions of poly rA.(poly rU)n, n = 1, 2 over the range of NaCl concentrations 0.01-1.0 M (Krakauer and Sturtevant (1968), Biopolymers 6, 491). For denaturation of duplexes and triplexes, delta gamma is negative and not significantly dependent on a +/-, but delta gamma is positive and dependent on a +/- for the disproportionation transition of poly rA.poly rU duplexes. Quantitative interpretations of these trends and magnitudes of delta gamma in terms of coulombic and excluded volume effects are obtained by fitting separately each of the two sets of thermodynamic data using Eq. 1 with delta gamma PB evaluated from the cylindrically symmetric Poisson-Boltzmann (PB) equation for a standard model of salt-polyelectrolyte solutions. The only structural parameters required by this model are: b, the mean axial distance between the projections of adjacent polyion charges onto the cylindrical axis; and a, the mean distance of closest approach between a salt ion center and the cylindrical axis. Fixing bMS and aMS for the multi-stranded (ordered) conformations, we determined the corresponding best fitted values of bSS and aSS for single-stranded RNA and DNA. The resulting best fitted values of aSS are systematically less than aDS by 2-4 A. Uncertainty in the best-fitted values of bSS is significantly lower than in the aSS, because bMS is known with relatively high precision and because the larger uncertainty in aMS has a relatively small effect on the best-fitted values of bSS:bSS = 3.2 +/- 0.6 A for single-stranded poly rA and poly rU; and bSS = 3.4 +/- 0.2 A for single-stranded DNA. These values are approximately one-halt of those expected for a fully extended single-stranded conformation. With the best fitted values of ass and bss, our calculations of delta gamma PB are in close quantitative agreement with experimental observations on each of five nucleic acid order-disorder transitions.

Full text

PDF
828

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alden C. J., Kim S. H. Solvent-accessible surfaces of nucleic acids. J Mol Biol. 1979 Aug 15;132(3):411–434. doi: 10.1016/0022-2836(79)90268-7. [DOI] [PubMed] [Google Scholar]
  2. Anderson C. F., Record M. T., Jr Ion distributions around DNA and other cylindrical polyions: theoretical descriptions and physical implications. Annu Rev Biophys Biophys Chem. 1990;19:423–465. doi: 10.1146/annurev.bb.19.060190.002231. [DOI] [PubMed] [Google Scholar]
  3. Anderson C. F., Record M. T., Jr The relationship between the poisson-boltzmann model and the condensation hypothesis: an analysis based on the low salt form of the Donnan coefficient. Biophys Chem. 1980 Jun;11(3-4):353–360. doi: 10.1016/0301-4622(80)87008-6. [DOI] [PubMed] [Google Scholar]
  4. Arnott S., Bond P. J., Selsing E., Smith P. J. Models of triple-stranded polynucleotides with optimised stereochemistry. Nucleic Acids Res. 1976 Oct;3(10):2459–2470. doi: 10.1093/nar/3.10.2459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arnott S., Bond P. J. Structures for Poly(U)-poly(A)-poly(U)triple stranded polynucleotides. Nat New Biol. 1973 Jul 25;244(134):99–101. doi: 10.1038/newbio244099a0. [DOI] [PubMed] [Google Scholar]
  6. Arnott S., Hukins D. W., Dover S. D., Fuller W., Hodgson A. R. Structures of synthetic polynucleotides in the A-RNA and A'-RNA conformations: x-ray diffraction analyses of the molecular conformations of polyadenylic acid--polyuridylic acid and polyinosinic acid--polycytidylic acid. J Mol Biol. 1973 Dec 5;81(2):107–122. doi: 10.1016/0022-2836(73)90183-6. [DOI] [PubMed] [Google Scholar]
  7. Filimonov V. V., Privalov P. L. Thermodynamics of base interaction in (A)n and (A.U)n. J Mol Biol. 1978 Jul 15;122(4):465–470. doi: 10.1016/0022-2836(78)90422-9. [DOI] [PubMed] [Google Scholar]
  8. Gulik A., Inoue H., Luzzati V. Conformation of single-stranded polynucleotides: small-angle x-ray scattering and spectroscopic study of polyribocytidylic acid in water and in water-alcohol solutions. J Mol Biol. 1970 Oct 28;53(2):221–238. doi: 10.1016/0022-2836(70)90296-2. [DOI] [PubMed] [Google Scholar]
  9. Jin R., Chapman W. H., Jr, Srinivasan A. R., Olson W. K., Breslow R., Breslauer K. J. Comparative spectroscopic, calorimetric, and computational studies of nucleic acid complexes with 2',5"-versus 3',5"-phosphodiester linkages. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10568–10572. doi: 10.1073/pnas.90.22.10568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krakauer H., Sturtevant J. M. Heats of the helix-coil transitions of the poly A-poly U complexes. Biopolymers. 1968 Apr;6(4):491–512. doi: 10.1002/bip.1968.360060406. [DOI] [PubMed] [Google Scholar]
  11. Manning G. S. On the application of polyelectrolyte "limiting laws" to the helix-coil transition of DNA. I. Excess univalent cations. Biopolymers. 1972;11(5):937–949. doi: 10.1002/bip.1972.360110502. [DOI] [PubMed] [Google Scholar]
  12. Manning G. S. The application of polyelectrolyte limiting laws to the helix-coil transition of DNA. VI. The numerical value of the axial phosphate spacing for the coil form. Biopolymers. 1976 Dec;15(12NA-NA-770103-770104):2385–2390. doi: 10.1002/bip.1976.360151206. [DOI] [PubMed] [Google Scholar]
  13. Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
  14. Monaselidze D. R., Mgeladze G. N. Teplovye svoistva DNK i polidezoksiribonukleotidov v shirokoi oblasti kontsentratsii ionov neitral'nykh solei i polimera. Biofizika. 1977 Sep-Oct;22(5):950–958. [PubMed] [Google Scholar]
  15. Olmsted M. C., Anderson C. F., Record M. T., Jr Importance of oligoelectrolyte end effects for the thermodynamics of conformational transitions of nucleic acid oligomers: a grand canonical Monte Carlo analysis. Biopolymers. 1991 Nov;31(13):1593–1604. doi: 10.1002/bip.360311314. [DOI] [PubMed] [Google Scholar]
  16. Record M. T., Jr, Anderson C. F., Lohman T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978 May;11(2):103–178. doi: 10.1017/s003358350000202x. [DOI] [PubMed] [Google Scholar]
  17. Record M. T., Jr Electrostatic effects on polynucleotide transitions. I. Behavior at neutral pH. Biopolymers. 1967;5(10):975–992. doi: 10.1002/bip.1967.360051010. [DOI] [PubMed] [Google Scholar]
  18. Record M. T., Jr, Mazur S. J., Melançon P., Roe J. H., Shaner S. L., Unger L. Double helical DNA: conformations, physical properties, and interactions with ligands. Annu Rev Biochem. 1981;50:997–1024. doi: 10.1146/annurev.bi.50.070181.005025. [DOI] [PubMed] [Google Scholar]
  19. Record M. T., Jr, Woodbury C. P., Lohman T. M. Na+ effects on transition of DNA and polynucleotides of variable linear charge density. Biopolymers. 1976 May;15(5):893–915. doi: 10.1002/bip.1976.360150507. [DOI] [PubMed] [Google Scholar]
  20. Riley M., Maling B. Physical and chemical characterization of two- and three-stranded adenine-thymine and adenine-uracil homopolymer complexes. J Mol Biol. 1966 Sep;20(2):359–389. doi: 10.1016/0022-2836(66)90069-6. [DOI] [PubMed] [Google Scholar]
  21. Strauss U. P., Helfgott C., Pink H. Interactions of polyelectrolytes with simple electrolytes. II. Donnan equilibria obtained with DNA in solutions of 1-1 electrolytes. J Phys Chem. 1967 Jul;71(8):2550–2556. doi: 10.1021/j100867a024. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES