Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Dec;67(6):2448–2453. doi: 10.1016/S0006-3495(94)80731-3

Local modes in a DNA polymer with hydrogen bond defect.

V K Saxena 1, L L Van Zandt 1
PMCID: PMC1225629  PMID: 7696483

Abstract

Vibrations of a homopolymer DNA with localized hydrogen bond defects have been examined using the recently developed decaying mode theory for long-chain polymers with local structural defects. For a poly(dA)-poly(dT) homopolymer having perturbed hydrogen bonds in one base pair, a localized mode at 63.2 cm-1 has been found. This mode has a very nearly pure H-bond stretch or "breathing" character, although the backbones do not separate. This agrees in frequency with a similar result found by other authors using a different approach. We search the full microwave frequency range for other local modes for several models of weakened H bonds. Besides the local mode with breathing characteristics, local modes with other characteristic motions were found, but only for asymmetrically perturbed bonds. We find in general that local modes are not very robust, requiring quite specific, narrow ranges in parameter space. They are also not abundant, there being only three in our most prolific model.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awati KM, Prohofsky EW. Prediction of a fluctuational local mode in B-form poly(dA)-poly(dT). Phys Rev A Gen Phys. 1989 Jul 1;40(1):497–500. doi: 10.1103/physreva.40.497. [DOI] [PubMed] [Google Scholar]
  2. Dorfman B. H., Van Zandt L. L. Effects of viscous solvent on DNA polymer in a fiber. Biopolymers. 1984 May;23(5):913–922. doi: 10.1002/bip.360230508. [DOI] [PubMed] [Google Scholar]
  3. Eyster J. M., Prohofsky E. W. Lattice vibrational modes of poly(rU) and poly(rA). Biopolymers. 1974 Dec;13(12):2505–2526. doi: 10.1002/bip.1974.360131209. [DOI] [PubMed] [Google Scholar]
  4. Hubbard J. B., Onsager L., van Beek W. M., Mandel M. Kinetic polarization deficiency in electrolyte solutions. Proc Natl Acad Sci U S A. 1977 Feb;74(2):401–404. doi: 10.1073/pnas.74.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kim Y, Prohofsky EW. Defect-mediated hydrogen-bond instability of poly(dG)-poly(dC). Phys Rev B Condens Matter. 1986 Apr 15;33(8):5676–5681. doi: 10.1103/physrevb.33.5676. [DOI] [PubMed] [Google Scholar]
  6. Miller K. J. Interactions of molecules with nucleic acids. I. An algorithm to generate nucleic acid structures with an application to the B-DNA structure and a counterclockwise helix. Biopolymers. 1979 Apr;18(4):959–980. doi: 10.1002/bip.1979.360180415. [DOI] [PubMed] [Google Scholar]
  7. Prabhu VV, Young L, Prohofsky EW. Hydrogen-bond melting in B-DNA copolymers in a mean-field self-consistent phonon approach. Phys Rev B Condens Matter. 1989 Mar 15;39(8):5436–5443. doi: 10.1103/physrevb.39.5436. [DOI] [PubMed] [Google Scholar]
  8. Putnam B. F., Van Zandt L. L., Prohofsky E. W., Mei W. N. Resonant and localized breathing modes in terminal regions of the DNA double helix. Biophys J. 1981 Aug;35(2):271–287. doi: 10.1016/S0006-3495(81)84789-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Saxena VK, Dorfman BH, Van Zandt LL Identifying and interpreting spectral features of dissolved poly(dA)-poly(dT) DNA polymer in the high-microwave range. Phys Rev A. 1991 Apr 15;43(8):4510–4516. doi: 10.1103/physreva.43.4510. [DOI] [PubMed] [Google Scholar]
  10. Saxena VK, Van Zandt LL Dynamics of dissolved DNA polymers using a frequency-dependent dielectric constant. Phys Rev A. 1990 Oct 15;42(8):4993–4997. doi: 10.1103/physreva.42.4993. [DOI] [PubMed] [Google Scholar]
  11. Saxena VK, Van Zandt LL Effect of counterions on the spectrum of dissolved DNA polymers. Phys Rev A. 1992 May 15;45(10):7610–7620. doi: 10.1103/physreva.45.7610. [DOI] [PubMed] [Google Scholar]
  12. Saxena VK, Van Zandt LL, Schroll WK. Effective field approach for long-range dissolved DNA polymer dynamics. Phys Rev A Gen Phys. 1989 Feb 1;39(3):1474–1481. doi: 10.1103/physreva.39.1474. [DOI] [PubMed] [Google Scholar]
  13. Schroll W. K., Van Zandt L. L., Saxena V. K. Low-frequency parameterization of hydrogen bonding. J Biomol Struct Dyn. 1991 Apr;8(5):1057–1067. doi: 10.1080/07391102.1991.10507865. [DOI] [PubMed] [Google Scholar]
  14. Small E. W., Peticolas W. L. Conformational dependence of the Raman scattering intensities from polynucleotides. 3. Order-disorder changes in helical structures. Biopolymers. 1971;10(8):1377–1418. doi: 10.1002/bip.360100811. [DOI] [PubMed] [Google Scholar]
  15. Tao N. J., Lindsay S. M., Rupprecht A. Dynamic coupling between DNA and its primary hydration shell studied by Brillouin scattering. Biopolymers. 1988 Oct;27(10):1655–1671. doi: 10.1002/bip.360271010. [DOI] [PubMed] [Google Scholar]
  16. Van Zandt LL, Saxena VK. Millimeter-microwave spectrum of DNA: Six predictions for spectroscopy. Phys Rev A Gen Phys. 1989 Mar 1;39(5):2672–2674. doi: 10.1103/physreva.39.2672. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES