Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Jul;65(1):205–214. doi: 10.1016/S0006-3495(93)81059-2

Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels.

D H Wachsstock 1, W H Schwartz 1, T D Pollard 1
PMCID: PMC1225716  PMID: 8369430

Abstract

Proteins that cross-link actin filaments can either form bundles of parallel filaments or isotropic networks of individual filaments. We have found that mixtures of actin filaments with alpha-actinin purified from either Acanthamoeba castellanii or chicken smooth muscle can form bundles or isotropic networks depending on their concentration. Low concentrations of alpha-actinin and actin filaments form networks indistinguishable in electron micrographs from gels of actin alone. Higher concentrations of alpha-actinin and actin filaments form bundles. The threshold for bundling depends on the affinity of the alpha-actinin for actin. The complex of Acanthamoeba alpha-actinin with actin filaments has a Kd of 4.7 microM and a bundling threshold of 0.1 microM; chicken smooth muscle has a Kd of 0.6 microM and a bundling threshold of 1 microM. The physical properties of isotropic networks of cross-linked actin filaments are very different from a gel of bundles: the network behaves like a solid because each actin filament is part of a single structure that encompasses all the filaments. Bundles of filaments behave more like a very viscous fluid because each bundle, while very long and stiff, can slip past other bundles. We have developed a computer model that predicts the bundling threshold based on four variables: the length of the actin filaments, the affinity of the alpha-actinin for actin, and the concentrations of actin and alpha-actinin.

Full text

PDF
206

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blanchard A., Ohanian V., Critchley D. The structure and function of alpha-actinin. J Muscle Res Cell Motil. 1989 Aug;10(4):280–289. doi: 10.1007/BF01758424. [DOI] [PubMed] [Google Scholar]
  2. Bremer A., Millonig R. C., Sütterlin R., Engel A., Pollard T. D., Aebi U. The structural basis for the intrinsic disorder of the actin filament: the "lateral slipping" model. J Cell Biol. 1991 Nov;115(3):689–703. doi: 10.1083/jcb.115.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brenner B. Rapid dissociation and reassociation of actomyosin cross-bridges during force generation: a newly observed facet of cross-bridge action in muscle. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10490–10494. doi: 10.1073/pnas.88.23.10490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bresnick A. R., Warren V., Condeelis J. Identification of a short sequence essential for actin binding by Dictyostelium ABP-120. J Biol Chem. 1990 Jun 5;265(16):9236–9240. [PubMed] [Google Scholar]
  5. Brown S. S. A Ca2+ insensitive actin-crosslinking protein from Dicytostelium discoideum. Cell Motil. 1985;5(6):529–543. doi: 10.1002/cm.970050608. [DOI] [PubMed] [Google Scholar]
  6. Burlacu S., Janmey P. A., Borejdo J. Distribution of actin filament lengths measured by fluorescence microscopy. Am J Physiol. 1992 Mar;262(3 Pt 1):C569–C577. doi: 10.1152/ajpcell.1992.262.3.C569. [DOI] [PubMed] [Google Scholar]
  7. Burridge K., Feramisco J. R. Non-muscle alpha actinins are calcium-sensitive actin-binding proteins. Nature. 1981 Dec 10;294(5841):565–567. doi: 10.1038/294565a0. [DOI] [PubMed] [Google Scholar]
  8. Cano M. L., Lauffenburger D. A., Zigmond S. H. Kinetic analysis of F-actin depolymerization in polymorphonuclear leukocyte lysates indicates that chemoattractant stimulation increases actin filament number without altering the filament length distribution. J Cell Biol. 1991 Nov;115(3):677–687. doi: 10.1083/jcb.115.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coppin C. M., Leavis P. C. Quantitation of liquid-crystalline ordering in F-actin solutions. Biophys J. 1992 Sep;63(3):794–807. doi: 10.1016/S0006-3495(92)81647-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cortese J. D., Frieden C. Effect of filamin and controlled linear shear on the microheterogeneity of F-actin/gelsolin gels. Cell Motil Cytoskeleton. 1990;17(3):236–249. doi: 10.1002/cm.970170310. [DOI] [PubMed] [Google Scholar]
  11. Craig S. W., Lancashire C. L., Cooper J. A. Preparation of smooth muscle alpha-actinin. Methods Enzymol. 1982;85(Pt B):316–321. doi: 10.1016/0076-6879(82)85031-3. [DOI] [PubMed] [Google Scholar]
  12. Detmers P., Weber A., Elzinga M., Stephens R. E. 7-Chloro-4-nitrobenzeno-2-oxa-1,3-diazole actin as a probe for actin polymerization. J Biol Chem. 1981 Jan 10;256(1):99–105. [PubMed] [Google Scholar]
  13. Fechheimer M., Taylor D. L. Isolation and characterization of a 30,000-dalton calcium-sensitive actin cross-linking protein from Dictyostelium discoideum. J Biol Chem. 1984 Apr 10;259(7):4514–4520. [PubMed] [Google Scholar]
  14. Gorlin J. B., Yamin R., Egan S., Stewart M., Stossel T. P., Kwiatkowski D. J., Hartwig J. H. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J Cell Biol. 1990 Sep;111(3):1089–1105. doi: 10.1083/jcb.111.3.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grazi E., Trombetta G., Guidoboni M. Binding of alpha-actinin to F-actin or to tropomyosin F-actin is a function of both alpha-actinin concentration and gel structure. J Muscle Res Cell Motil. 1991 Dec;12(6):579–584. doi: 10.1007/BF01738446. [DOI] [PubMed] [Google Scholar]
  16. Hou L., Luby-Phelps K., Lanni F. Brownian motion of inert tracer macromolecules in polymerized and spontaneously bundled mixtures of actin and filamin. J Cell Biol. 1990 May;110(5):1645–1654. doi: 10.1083/jcb.110.5.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jockusch B. M., Isenberg G. Interaction of alpha-actinin and vinculin with actin: opposite effects on filament network formation. Proc Natl Acad Sci U S A. 1981 May;78(5):3005–3009. doi: 10.1073/pnas.78.5.3005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kahana E., Gratzer W. B. Properties of the spectrin-like structural element of smooth-muscle alpha-actinin. Cell Motil Cytoskeleton. 1991;20(3):242–248. doi: 10.1002/cm.970200307. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lanni F., Ware B. R. Detection and characterization of actin monomers, oligomers, and filaments in solution by measurement of fluorescence photobleaching recovery. Biophys J. 1984 Jul;46(1):97–110. doi: 10.1016/S0006-3495(84)84002-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maciver S. K., Wachsstock D. H., Schwarz W. H., Pollard T. D. The actin filament severing protein actophorin promotes the formation of rigid bundles of actin filaments crosslinked with alpha-actinin. J Cell Biol. 1991 Dec;115(6):1621–1628. doi: 10.1083/jcb.115.6.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsudaira P. Modular organization of actin crosslinking proteins. Trends Biochem Sci. 1991 Mar;16(3):87–92. doi: 10.1016/0968-0004(91)90039-x. [DOI] [PubMed] [Google Scholar]
  23. Meyer R. K., Aebi U. Bundling of actin filaments by alpha-actinin depends on its molecular length. J Cell Biol. 1990 Jun;110(6):2013–2024. doi: 10.1083/jcb.110.6.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mimura N., Asano A. Isolation and characterization of a conserved actin-binding domain from rat hepatic actinogelin, rat skeletal muscle, and chicken gizzard alpha-actinins. J Biol Chem. 1986 Aug 15;261(23):10680–10687. [PubMed] [Google Scholar]
  25. Niederman R., Amrein P. C., Hartwig J. Three-dimensional structure of actin filaments and of an actin gel made with actin-binding protein. J Cell Biol. 1983 May;96(5):1400–1413. doi: 10.1083/jcb.96.5.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nossal R. On the elasticity of cytoskeletal networks. Biophys J. 1988 Mar;53(3):349–359. doi: 10.1016/S0006-3495(88)83112-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Podolski J. L., Steck T. L. Length distribution of F-actin in Dictyostelium discoideum. J Biol Chem. 1990 Jan 25;265(3):1312–1318. [PubMed] [Google Scholar]
  28. Pollard T. D. Assembly and dynamics of the actin filament system in nonmuscle cells. J Cell Biochem. 1986;31(2):87–95. doi: 10.1002/jcb.240310202. [DOI] [PubMed] [Google Scholar]
  29. Pollard T. D., Tseng P. C., Rimm D. L., Bichell D. P., Williams R. C., Jr, Sinard J., Sato M. Characterization of alpha-actinin from Acanthamoeba. Cell Motil Cytoskeleton. 1986;6(6):649–661. doi: 10.1002/cm.970060613. [DOI] [PubMed] [Google Scholar]
  30. Sato M., Leimbach G., Schwarz W. H., Pollard T. D. Mechanical properties of actin. J Biol Chem. 1985 Jul 15;260(14):8585–8592. [PubMed] [Google Scholar]
  31. Sato M., Schwarz W. H., Pollard T. D. Dependence of the mechanical properties of actin/alpha-actinin gels on deformation rate. 1987 Feb 26-Mar 4Nature. 325(6107):828–830. doi: 10.1038/325828a0. [DOI] [PubMed] [Google Scholar]
  32. Simon J. R., Furukawa R. H., Ware B. R., Taylor D. L. The molecular mobility of alpha-actinin and actin in a reconstituted model of gelation. Cell Motil Cytoskeleton. 1988;11(1):64–82. doi: 10.1002/cm.970110107. [DOI] [PubMed] [Google Scholar]
  33. Small J. V. Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks. J Cell Biol. 1981 Dec;91(3 Pt 1):695–705. doi: 10.1083/jcb.91.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Suzuki A., Goll D. E., Stromer M. H., Temple J. -actinin from red and white porcine muscle. Biochim Biophys Acta. 1973 Jan 25;295(1):188–207. doi: 10.1016/0005-2795(73)90087-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES