Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Jul;65(1):450–468. doi: 10.1016/S0006-3495(93)81038-5

Solutions for transients in arbitrarily branching cables

II. Voltage clamp theory

Guy Major 1, Jonathan D Evans 1, J Julian B Jack 1
PMCID: PMC1225739  PMID: 8369449

Abstract

Analytical solutions are derived for arbitrarily branching passive neurone models with a soma and somatic shunt, for synaptic inputs and somatic voltage commands, for both perfect and imperfect somatic voltage clamp. The solutions are infinite exponential series. Perfect clamp decouples different dendritic trees at the soma: each exponential component exists only in one tree; its time constant is independent of stimulating and recording position within the tree; its amplitude is the product of a factor constant over that entire tree and factors dependent on stimulating and recording positions. Imperfect clamp to zero is mathematically equivalent to voltage recording with a shunt. As the series resistance increases, different dendritic trees become more strongly coupled. A number of interesting response symmetries are evident. The solutions reveal parameter dependencies, including an insensitivity of the early parts of the responses to specific membrane resistivity and somatic shunt, and an approximately linear dependence of the slower time constants on series resistance, for small series resistances. The solutions are illustrated using a “cartoon” representation of a CA1 pyramidal cell and a two-cylinder + soma model.

Full text

PDF
450

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott L. F., Farhi E., Gutmann S. The path integral for dendritic trees. Biol Cybern. 1991;66(1):49–60. doi: 10.1007/BF00196452. [DOI] [PubMed] [Google Scholar]
  2. Barrett J. N., Crill W. E. Specific membrane properties of cat motoneurones. J Physiol. 1974 Jun;239(2):301–324. doi: 10.1113/jphysiol.1974.sp010570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bluman G. W., Tuckwell H. C. Techniques for obtaining analytical solutions for Rall's model neuron. J Neurosci Methods. 1987 Jun;20(2):151–166. doi: 10.1016/0165-0270(87)90047-1. [DOI] [PubMed] [Google Scholar]
  4. Butz E. G., Cowan J. D. Transient potentials in dendritic systems of arbitrary geometry. Biophys J. 1974 Sep;14(9):661–689. doi: 10.1016/S0006-3495(74)85943-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Durand D. The somatic shunt cable model for neurons. Biophys J. 1984 Nov;46(5):645–653. doi: 10.1016/S0006-3495(84)84063-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans J. D., Kember G. C., Major G. Techniques for obtaining analytical solutions to the multicylinder somatic shunt cable model for passive neurones. Biophys J. 1992 Aug;63(2):350–365. doi: 10.1016/S0006-3495(92)81631-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holmes W. R. A continuous cable method for determining the transient potential in passive dendritic trees of known geometry. Biol Cybern. 1986;55(2-3):115–124. doi: 10.1007/BF00341927. [DOI] [PubMed] [Google Scholar]
  8. Horwitz B. An analytical method for investigating transient potentials in neurons with branching dendritic trees. Biophys J. 1981 Oct;36(1):155–192. doi: 10.1016/S0006-3495(81)84722-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jackson M. B. Cable analysis with the whole-cell patch clamp. Theory and experiment. Biophys J. 1992 Mar;61(3):756–766. doi: 10.1016/S0006-3495(92)81880-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kawato M. Cable properties of a neuron model with non-uniform membrane resistivity. J Theor Biol. 1984 Nov 7;111(1):149–169. doi: 10.1016/s0022-5193(84)80202-7. [DOI] [PubMed] [Google Scholar]
  11. Koch C., Poggio T. A simple algorithm for solving the cable equation in dendritic trees of arbitrary geometry. J Neurosci Methods. 1985 Feb;12(4):303–315. doi: 10.1016/0165-0270(85)90015-9. [DOI] [PubMed] [Google Scholar]
  12. Koch C., Poggio T., Torre V. Retinal ganglion cells: a functional interpretation of dendritic morphology. Philos Trans R Soc Lond B Biol Sci. 1982 Jul 27;298(1090):227–263. doi: 10.1098/rstb.1982.0084. [DOI] [PubMed] [Google Scholar]
  13. Major G., Evans J. D., Jack J. J. Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt. Biophys J. 1993 Jul;65(1):423–449. doi: 10.1016/S0006-3495(93)81037-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Major G. Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems. Biophys J. 1993 Jul;65(1):469–491. doi: 10.1016/S0006-3495(93)81039-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Norman R. S. Cable theory for finite length dendritic cylinders with initial and boundary conditions. Biophys J. 1972 Jan;12(1):25–45. doi: 10.1016/S0006-3495(72)86069-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RALL W. Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol. 1959 Nov;1:491–527. doi: 10.1016/0014-4886(59)90046-9. [DOI] [PubMed] [Google Scholar]
  17. Rall W., Rinzel J. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J. 1973 Jul;13(7):648–687. doi: 10.1016/S0006-3495(73)86014-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rall W. Time constants and electrotonic length of membrane cylinders and neurons. Biophys J. 1969 Dec;9(12):1483–1508. doi: 10.1016/S0006-3495(69)86467-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rinzel J., Rall W. Transient response in a dendritic neuron model for current injected at one branch. Biophys J. 1974 Oct;14(10):759–790. doi: 10.1016/S0006-3495(74)85948-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Silver R. A., Traynelis S. F., Cull-Candy S. G. Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature. 1992 Jan 9;355(6356):163–166. doi: 10.1038/355163a0. [DOI] [PubMed] [Google Scholar]
  21. Turner D. A. Segmental cable evaluation of somatic transients in hippocampal neurons (CA1, CA3, and dentate). Biophys J. 1984 Jul;46(1):73–84. doi: 10.1016/S0006-3495(84)84000-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES